{"title":"Strain-induced thermal switches with a high switching ratio in monolayer boron sulfide","authors":"Zhifu Duan, Zhongke Ding, Fang Xie, Jiang Zeng, Liming Tang, Nannan Luo, Keqiu Chen","doi":"10.1063/5.0241220","DOIUrl":null,"url":null,"abstract":"Manipulating the thermal conductivity of materials and achieving a high thermal switching ratio is very important in fields such as thermal management and energy conversion. In this study, by utilizing first-principles calculations and semi-classical Boltzmann transport theory, we find the lattice thermal conductivity (κl) of monolayer boron sulfide (BS) can reach values as low as 0.11 Wm−1 K−1 at room temperature, significantly lower than that of well-known two-dimensional materials with low thermal conductivity such as SnSe. This phenomenon is mainly caused by the strong lattice anharmonicity, which is primarily induced by the lone electron pairs. The effect of biaxial strain on κl is further investigated. It is found that a small strain of 2% can lead to a two orders of magnitude increase in κl. Moreover, this property remains stable within the strain range of 2%–7%, making it easier to achieve experimentally. The variation of κl with strain is mainly determined by the change in phonon lifetime, which is governed by the competition between the reduction of anti-bonding valence band states and the enhanced coupling between soft optical and acoustic phonons. Our results indicate that monolayer BS is a promising candidate material for thermal switches and energy conversion devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"43 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0241220","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Manipulating the thermal conductivity of materials and achieving a high thermal switching ratio is very important in fields such as thermal management and energy conversion. In this study, by utilizing first-principles calculations and semi-classical Boltzmann transport theory, we find the lattice thermal conductivity (κl) of monolayer boron sulfide (BS) can reach values as low as 0.11 Wm−1 K−1 at room temperature, significantly lower than that of well-known two-dimensional materials with low thermal conductivity such as SnSe. This phenomenon is mainly caused by the strong lattice anharmonicity, which is primarily induced by the lone electron pairs. The effect of biaxial strain on κl is further investigated. It is found that a small strain of 2% can lead to a two orders of magnitude increase in κl. Moreover, this property remains stable within the strain range of 2%–7%, making it easier to achieve experimentally. The variation of κl with strain is mainly determined by the change in phonon lifetime, which is governed by the competition between the reduction of anti-bonding valence band states and the enhanced coupling between soft optical and acoustic phonons. Our results indicate that monolayer BS is a promising candidate material for thermal switches and energy conversion devices.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.