Combined supramolecular solvent preparation and solid extraction

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miriana Kfoury, Céline Alamichel, Sophie Fourmentin
{"title":"Combined supramolecular solvent preparation and solid extraction","authors":"Miriana Kfoury, Céline Alamichel, Sophie Fourmentin","doi":"10.1007/s10311-025-01819-6","DOIUrl":null,"url":null,"abstract":"<p>Classical extraction involves several time-consuming and costly steps using toxic solvents. Here, we combined the preparation of a cyclodextrin-based supramolecular deep eutectic solvent and the extraction of spent coffee grounds by microwave irradiation in a single step. We tested two new solvents, randomly methylated-β-cyclodextrin:propylene glycol and hydroxypropyl-β-cyclodextrin:ethylene glycol, and compared the results with two classical solvents, chloride:urea (1:2) and ethanol/water 80/20 vol%. We also used classical Soxhlet extraction. We calculated the sustainability of the process using ComplexGAPI. Results show that the optimal one-step extraction conditions were 15 min of irradiation at 80 °C with the addition of 10 wt% water. Under these conditions, the two new solvents showed higher extraction yields of antioxidants and polyphenols than choline chloride:urea (1:2) or ethanol/water 80/20 vol%. Similarly, the half maximal effective concentration and gallic acid equivalent of the Soxhlet extracts were 5 and 3 times lower, respectively, than those obtained with hydroxypropyl-β-cyclodextrin:ethylene glycol (1:40) 10 wt% water. The composition of the extracts from the one-step process was similar to that of the Soxhlet extract. Sustainability analysis revealed low energy consumption, reduced unitary operations and less waste production.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"52 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01819-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Classical extraction involves several time-consuming and costly steps using toxic solvents. Here, we combined the preparation of a cyclodextrin-based supramolecular deep eutectic solvent and the extraction of spent coffee grounds by microwave irradiation in a single step. We tested two new solvents, randomly methylated-β-cyclodextrin:propylene glycol and hydroxypropyl-β-cyclodextrin:ethylene glycol, and compared the results with two classical solvents, chloride:urea (1:2) and ethanol/water 80/20 vol%. We also used classical Soxhlet extraction. We calculated the sustainability of the process using ComplexGAPI. Results show that the optimal one-step extraction conditions were 15 min of irradiation at 80 °C with the addition of 10 wt% water. Under these conditions, the two new solvents showed higher extraction yields of antioxidants and polyphenols than choline chloride:urea (1:2) or ethanol/water 80/20 vol%. Similarly, the half maximal effective concentration and gallic acid equivalent of the Soxhlet extracts were 5 and 3 times lower, respectively, than those obtained with hydroxypropyl-β-cyclodextrin:ethylene glycol (1:40) 10 wt% water. The composition of the extracts from the one-step process was similar to that of the Soxhlet extract. Sustainability analysis revealed low energy consumption, reduced unitary operations and less waste production.

超分子溶剂制备与固体萃取相结合
传统的提取方法包括使用有毒溶剂的几个耗时且昂贵的步骤。本研究将基于环糊精的超分子深度共晶溶剂的制备与微波辐射萃取废咖啡渣的工艺一步结合起来。实验了随机甲基化-β-环糊精:丙二醇和羟丙基-β-环糊精:乙二醇两种新型溶剂,并与氯脲(1:2)和乙醇/水80/20 vol%两种经典溶剂进行了比较。我们还使用了经典的索氏提取。我们使用ComplexGAPI计算过程的可持续性。结果表明,最佳的一步提取条件为:在80℃条件下,加入10% wt%的水,辐照15 min。在此条件下,两种新溶剂:尿素(1:2)和乙醇/水(80/20 vol%)对抗氧化剂和多酚的提取率均高于氯化胆碱。同样,索氏提取物的半最大有效浓度和没食子酸当量分别比用羟丙基-β-环糊精:乙二醇(1:40)10 wt%水得到的提取物低5倍和3倍。一步法提取液的组成与索氏提取液相似。可持续性分析显示低能耗,减少了单一操作和更少的废物产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信