{"title":"Zerumbone Induces Apoptosis in Non-Small-Cell Lung Cancer via Biomolecular Alterations: A Microscopic and Spectroscopic Study","authors":"Çağla Zübeyde Köprü, Burcu Baba, Dilek Yonar","doi":"10.1002/jbio.202400500","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0–100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results. MDA levels increased significantly, although HNE levels increased non-significantly in zerumbone-treated cells. Spectral analyses revealed that the zerumbone-treated groups had higher levels of total saturated and unsaturated lipids as well as comparatively shorter-chain lipids. On the contrary, reduced RNA/DNA ratio, total nucleic acid, and protein content were found in zerumbone-treated groups. Consequently, zerumbone-induced apoptosis was accompanied by increased aldehyde products during lipid peroxidation as well as biomolecular alterations.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400500","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Zerumbone is a sesquiterpene phytochemical with cytotoxic activity against cancer. This study aimed to evaluate the effect of zerumbone on cell viability by WST-1 test, apoptosis by TUNEL, lipid peroxidation markers (malondialdehyde, MDA, and 4-hydroxynonenal, HNE) by using assay kits, and biomolecular changes by ATR-FTIR spectroscopy in A549 cells. After zerumbone (0–100 μM) incubation for 24, 48, and 72 h, the number of TUNEL-positive cells was found to be higher in zerumbone-treated cells than in controls, in consistent with cell morphology results. MDA levels increased significantly, although HNE levels increased non-significantly in zerumbone-treated cells. Spectral analyses revealed that the zerumbone-treated groups had higher levels of total saturated and unsaturated lipids as well as comparatively shorter-chain lipids. On the contrary, reduced RNA/DNA ratio, total nucleic acid, and protein content were found in zerumbone-treated groups. Consequently, zerumbone-induced apoptosis was accompanied by increased aldehyde products during lipid peroxidation as well as biomolecular alterations.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.