A New Fluorescence Probe for the Quantification of Acetylcysteine and Carbocisteine in Bulk and Spiked Urine: Greenness Appraisal by Exploiting Different GAC-Metric Strategies.

IF 3.2 4区 化学 Q2 CHEMISTRY, ANALYTICAL
Luminescence Pub Date : 2025-01-01 DOI:10.1002/bio.70077
Hadil M Elbardisy, Tarek S Belal, Mohsen M T El-Tahawy, Wael Talaat, Reda M Keshk
{"title":"A New Fluorescence Probe for the Quantification of Acetylcysteine and Carbocisteine in Bulk and Spiked Urine: Greenness Appraisal by Exploiting Different GAC-Metric Strategies.","authors":"Hadil M Elbardisy, Tarek S Belal, Mohsen M T El-Tahawy, Wael Talaat, Reda M Keshk","doi":"10.1002/bio.70077","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, a novel spectrofluorometric sensor is proposed for the sensitive analysis of two nonfluorescent mucolytic drugs, namely, acetylcysteine (ACT) and carbocisteine (CST), utilizing the newly synthesized 2-[(2-hydroxyethyl)-(2,8,10-trimethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidin-4-yl)-amino]-ethanol as a fluorescence probe (Flu. Probe). This fluorophore exhibits fluorescence emission at 445 nm upon excitation at 275 nm. The addition of increasing concentrations of each drug resulted in quantitative quenching of the Flu. Probe's fluorescence. Investigation into the quenching mechanism revealed that static quenching is the primary contributing factor for both drugs. The spectroscopic characteristics of the Flu. Probe in the presence of ACT and CST were analyzed using DFT and TD-B3LYP calculations, revealing typical π → π* transitions, attributed to stable hydrogen-bonding structures. The developed method was validated in accordance with ICH Q2(R1) guidelines. Linear responses for ACT and CST were observed over concentration ranges 0.125-2.25 and 0.125-3.0 μg/mL, respectively, with detection limits (LODs) 31.97 and 37.14 ng/mL. The proposed spectrofluorometric platform was successfully applied to the analysis of ACT and CST in pharmaceutical dosage forms and spiked urine, within concentration ranges 0.25-2.25 and 0.25-2.50 μg/mL and LODs = 80.21 and 71.48 ng/mL, respectively. Finally, the greenness of the proposed protocol was evaluated employing GAPI, hexagon, and AGREE approaches.</p>","PeriodicalId":49902,"journal":{"name":"Luminescence","volume":"40 1","pages":"e70077"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Luminescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/bio.70077","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a novel spectrofluorometric sensor is proposed for the sensitive analysis of two nonfluorescent mucolytic drugs, namely, acetylcysteine (ACT) and carbocisteine (CST), utilizing the newly synthesized 2-[(2-hydroxyethyl)-(2,8,10-trimethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidin-4-yl)-amino]-ethanol as a fluorescence probe (Flu. Probe). This fluorophore exhibits fluorescence emission at 445 nm upon excitation at 275 nm. The addition of increasing concentrations of each drug resulted in quantitative quenching of the Flu. Probe's fluorescence. Investigation into the quenching mechanism revealed that static quenching is the primary contributing factor for both drugs. The spectroscopic characteristics of the Flu. Probe in the presence of ACT and CST were analyzed using DFT and TD-B3LYP calculations, revealing typical π → π* transitions, attributed to stable hydrogen-bonding structures. The developed method was validated in accordance with ICH Q2(R1) guidelines. Linear responses for ACT and CST were observed over concentration ranges 0.125-2.25 and 0.125-3.0 μg/mL, respectively, with detection limits (LODs) 31.97 and 37.14 ng/mL. The proposed spectrofluorometric platform was successfully applied to the analysis of ACT and CST in pharmaceutical dosage forms and spiked urine, within concentration ranges 0.25-2.25 and 0.25-2.50 μg/mL and LODs = 80.21 and 71.48 ng/mL, respectively. Finally, the greenness of the proposed protocol was evaluated employing GAPI, hexagon, and AGREE approaches.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Luminescence
Luminescence 生物-生化与分子生物学
CiteScore
5.10
自引率
13.80%
发文量
248
审稿时长
3.5 months
期刊介绍: Luminescence provides a forum for the publication of original scientific papers, short communications, technical notes and reviews on fundamental and applied aspects of all forms of luminescence, including bioluminescence, chemiluminescence, electrochemiluminescence, sonoluminescence, triboluminescence, fluorescence, time-resolved fluorescence and phosphorescence. Luminescence publishes papers on assays and analytical methods, instrumentation, mechanistic and synthetic studies, basic biology and chemistry. Luminescence also publishes details of forthcoming meetings, information on new products, and book reviews. A special feature of the Journal is surveys of the recent literature on selected topics in luminescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信