{"title":"HighDimMixedModels.jl: Robust high-dimensional mixed-effects models across omics data.","authors":"Evan Gorstein, Rosa Aghdam, Claudia Solís-Lemus","doi":"10.1371/journal.pcbi.1012143","DOIUrl":null,"url":null,"abstract":"<p><p>High-dimensional mixed-effects models are an increasingly important form of regression in which the number of covariates rivals or exceeds the number of samples, which are collected in groups or clusters. The penalized likelihood approach to fitting these models relies on a coordinate descent algorithm that lacks guarantees of convergence to a global optimum. Here, we empirically study the behavior of this algorithm on simulated and real examples of three types of data that are common in modern biology: transcriptome, genome-wide association, and microbiome data. Our simulations provide new insights into the algorithm's behavior in these settings, and, comparing the performance of two popular penalties, we demonstrate that the smoothly clipped absolute deviation (SCAD) penalty consistently outperforms the least absolute shrinkage and selection operator (LASSO) penalty in terms of both variable selection and estimation accuracy across omics data. To empower researchers in biology and other fields to fit models with the SCAD penalty, we implement the algorithm in a Julia package, HighDimMixedModels.jl.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012143"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012143","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
High-dimensional mixed-effects models are an increasingly important form of regression in which the number of covariates rivals or exceeds the number of samples, which are collected in groups or clusters. The penalized likelihood approach to fitting these models relies on a coordinate descent algorithm that lacks guarantees of convergence to a global optimum. Here, we empirically study the behavior of this algorithm on simulated and real examples of three types of data that are common in modern biology: transcriptome, genome-wide association, and microbiome data. Our simulations provide new insights into the algorithm's behavior in these settings, and, comparing the performance of two popular penalties, we demonstrate that the smoothly clipped absolute deviation (SCAD) penalty consistently outperforms the least absolute shrinkage and selection operator (LASSO) penalty in terms of both variable selection and estimation accuracy across omics data. To empower researchers in biology and other fields to fit models with the SCAD penalty, we implement the algorithm in a Julia package, HighDimMixedModels.jl.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.