Obaï Bin Ka'b Ali, Alexandre Vidal, Christophe Grova, Habib Benali
{"title":"Dialogue mechanisms between astrocytic and neuronal networks: A whole-brain modelling approach.","authors":"Obaï Bin Ka'b Ali, Alexandre Vidal, Christophe Grova, Habib Benali","doi":"10.1371/journal.pcbi.1012683","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012683"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730384/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012683","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways. This network model proposes that neural dynamics are constrained by a two-layered structural network interconnecting both astrocytic and neuronal populations, allowing us to investigate astrocytes' modulatory influences on whole-brain activity and emerging functional connectivity patterns. By developing a simulation methodology, informed by bifurcation and multilayer network theories, we demonstrate that the dialogue between astrocytic and neuronal networks manifests over fast-slow fluctuation mechanisms as well as through phase-amplitude connectivity processes. The findings from our research represent a significant leap forward in the modeling of glial-neuronal collaboration, promising deeper insights into their collaborative roles across health and disease states.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.