Mechanical Analysis of Phellinus Linteus-Induced Apoptosis of Hepatoma Cells.

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY
Yuxi Huang, Fan Yang, Chuanzhi Liu, Jianfei Wang, Ying Wang, Guicai Song, Zuobin Wang
{"title":"Mechanical Analysis of Phellinus Linteus-Induced Apoptosis of Hepatoma Cells.","authors":"Yuxi Huang, Fan Yang, Chuanzhi Liu, Jianfei Wang, Ying Wang, Guicai Song, Zuobin Wang","doi":"10.1002/jemt.24804","DOIUrl":null,"url":null,"abstract":"<p><p>Liver cancer is prevalent with the third highest mortality rate globally. The biomechanical properties of cancer cells play a crucial role in their proliferation and differentiation. Studying the morphological and mechanical properties of individual living cells can be helpful for early diagnosis of cancers. Herein, atomic force microscopy (AFM) was used to investigate the effects of Phellinus linteus on hepatocyte cells (HL-7702) and hepatocellular carcinoma cells (SMCC-7721) in terms of morphological and mechanical changes at the nanoscale. The water extract of Phellinus linteus (PLWE) resulted in increased height and surface roughness of SMCC-7721 cells. Also, the PLWE-treated showed that the average adhesion decreased by 1.69 nN and the average Young's modulus increased by 0.379 kPa. Additionally, the SMCC-7721 cells treated with PLWE showed clearly reduced activity compared with HL-7702 cells. This study suggested that Phellinus Linteus could be a potential candidate for selective anti-cancer therapy, providing a new avenue for the treatment of hepatocellular carcinoma.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24804","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver cancer is prevalent with the third highest mortality rate globally. The biomechanical properties of cancer cells play a crucial role in their proliferation and differentiation. Studying the morphological and mechanical properties of individual living cells can be helpful for early diagnosis of cancers. Herein, atomic force microscopy (AFM) was used to investigate the effects of Phellinus linteus on hepatocyte cells (HL-7702) and hepatocellular carcinoma cells (SMCC-7721) in terms of morphological and mechanical changes at the nanoscale. The water extract of Phellinus linteus (PLWE) resulted in increased height and surface roughness of SMCC-7721 cells. Also, the PLWE-treated showed that the average adhesion decreased by 1.69 nN and the average Young's modulus increased by 0.379 kPa. Additionally, the SMCC-7721 cells treated with PLWE showed clearly reduced activity compared with HL-7702 cells. This study suggested that Phellinus Linteus could be a potential candidate for selective anti-cancer therapy, providing a new avenue for the treatment of hepatocellular carcinoma.

茴香诱导肝癌细胞凋亡的力学分析。
肝癌很普遍,是全球死亡率第三高的疾病。肿瘤细胞的生物力学特性在其增殖和分化中起着至关重要的作用。研究单个活细胞的形态和力学特性有助于癌症的早期诊断。本文采用原子力显微镜(AFM)在纳米尺度上研究了黄菖蒲对肝细胞(HL-7702)和肝癌细胞(SMCC-7721)在形态和力学方面的影响。毛茛水提物(Phellinus linteus, PLWE)可提高SMCC-7721细胞的高度和表面粗糙度。plwe处理后,平均黏附力降低1.69 nN,平均杨氏模量增加0.379 kPa。此外,与HL-7702细胞相比,PLWE处理的SMCC-7721细胞的活性明显降低。本研究提示,茶树属植物可能是一种潜在的选择性抗癌药物,为肝细胞癌的治疗提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信