Makkieh Jahanpeimay Sabet, Akbar Hasanzadeh, Amirhossein Vahabi, Elaheh Sadat Hosseini, Sara Saeedi, Beheshteh Khodadadi Chegeni, Jafar Kiani, Behjat Kheiri Yeghaneh Azar, Zahra Asghari Molabashi, Mehdi Shamsara, Michael R Hamblin, Mahdi Karimi, Abazar Roustazadeh
{"title":"Metal-Coordinated Histidine-Functionalized Redox-Responsive Polyethyleneimine as a Smart Gene Delivery Vector.","authors":"Makkieh Jahanpeimay Sabet, Akbar Hasanzadeh, Amirhossein Vahabi, Elaheh Sadat Hosseini, Sara Saeedi, Beheshteh Khodadadi Chegeni, Jafar Kiani, Behjat Kheiri Yeghaneh Azar, Zahra Asghari Molabashi, Mehdi Shamsara, Michael R Hamblin, Mahdi Karimi, Abazar Roustazadeh","doi":"10.1007/s12033-024-01360-x","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types. In this study, to convert common polyethylenimine (PEI<sub>1.8k</sub>) into high-performance DNA delivery vectors, an innovative multifunctional vector was constructed based on histidine linked to PEI<sub>1.8k</sub> by redox-responsive disulfide bonds. Apart from highly efficient transfection of both small and large plasmids into HEK 293T (Human Embryonic Kidney 293T cells) with negligible cytotoxicity, PEI<sub>1.8k</sub>-S-S-His showed great transfection potential even at low plasmid doses (0.5 µg), as well as at serum concentrations ranging from 5 to 30% into HEK 293T cells, and achieved excellent plasmid transfection into NIH/3T3 (Mouse Embryonic Fibroblast cells), and MCF7 (Human Breast Cancer cells). Additionally, several metals were tested (Co, Cu, Cd, Ni, Zn, and Mn) to promote the plasmid packaging functionality and improve transfection efficiency. We observed that, in comparison to PEI<sub>1.8k</sub>-S-S-His, the manganese-functionalized nanocarrier (PEI<sub>1.8k</sub>-S-S-His-Mn) could transfect a large plasmid with equal efficiency (~ 30%) into MSCs (Mesenchymal Stem Cells). Interestingly, PEI<sub>1.8k</sub>-S-S-His-Mn showed higher transfection efficiency with the small plasmid (~ 90%) and the large one (~ 80%) into HEK 293T cells, even better than its backbone. We propose that the presence of metal-coordinated His ligand, redox-responsive S-S bonds, and the cationic polymer can synergistically provide robust DNA binding, efficient endosomal disruption, tolerance of serum protein adsorption, and low cytotoxicity. These new vectors could be promising for gene delivery and may be therapeutically relevant.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01360-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types. In this study, to convert common polyethylenimine (PEI1.8k) into high-performance DNA delivery vectors, an innovative multifunctional vector was constructed based on histidine linked to PEI1.8k by redox-responsive disulfide bonds. Apart from highly efficient transfection of both small and large plasmids into HEK 293T (Human Embryonic Kidney 293T cells) with negligible cytotoxicity, PEI1.8k-S-S-His showed great transfection potential even at low plasmid doses (0.5 µg), as well as at serum concentrations ranging from 5 to 30% into HEK 293T cells, and achieved excellent plasmid transfection into NIH/3T3 (Mouse Embryonic Fibroblast cells), and MCF7 (Human Breast Cancer cells). Additionally, several metals were tested (Co, Cu, Cd, Ni, Zn, and Mn) to promote the plasmid packaging functionality and improve transfection efficiency. We observed that, in comparison to PEI1.8k-S-S-His, the manganese-functionalized nanocarrier (PEI1.8k-S-S-His-Mn) could transfect a large plasmid with equal efficiency (~ 30%) into MSCs (Mesenchymal Stem Cells). Interestingly, PEI1.8k-S-S-His-Mn showed higher transfection efficiency with the small plasmid (~ 90%) and the large one (~ 80%) into HEK 293T cells, even better than its backbone. We propose that the presence of metal-coordinated His ligand, redox-responsive S-S bonds, and the cationic polymer can synergistically provide robust DNA binding, efficient endosomal disruption, tolerance of serum protein adsorption, and low cytotoxicity. These new vectors could be promising for gene delivery and may be therapeutically relevant.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.