Mosla Chinensis Extract Enhances Growth Performance, Antioxidant Capacity, and Intestinal Health in Broilers by Modulating Gut Microbiota.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Wei Wang, Yuyu Wang, Peng Huang, Junjuan Zhou, Guifeng Tan, Jianguo Zeng, Wei Liu
{"title":"Mosla Chinensis Extract Enhances Growth Performance, Antioxidant Capacity, and Intestinal Health in Broilers by Modulating Gut Microbiota.","authors":"Wei Wang, Yuyu Wang, Peng Huang, Junjuan Zhou, Guifeng Tan, Jianguo Zeng, Wei Liu","doi":"10.3390/microorganisms12122647","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1-21) and a grower phase (days 22-42). The control group (C) received a basal diet, while the experimental groups were supplemented with low (S1, 500 mg/kg), medium (S2, 1000 mg/kg), and high doses (S3, 2000 mg/kg) of MCE. The results showed that MCE supplementation significantly improved average daily gain in broilers (<i>p</i> < 0.05) and reduced the feed-to-gain ratio in broilers. Additionally, MCE enhanced the anti-inflammatory and antioxidant capacity of broilers. In the duodenum and cecum, MCE significantly upregulated the expression of tight junction proteins Claudin-1, and Occludin, with the high-dose group showing the strongest effect on intestinal barrier protection (<i>p</i> < 0.05). There was no significant difference in ZO-1 in dudenum (<i>p</i> > 0.05). Microbial analysis indicated that MCE supplementation significantly reduced the Chao and Sobs indices in both the small and large intestines (<i>p</i> < 0.05). At the same time, the Coverage index of the small intestine increased, with the high-dose group demonstrating the most pronounced effect. Beta diversity analysis revealed that MCE had a significant modulatory effect on the microbial composition in the large intestine (<i>p</i> < 0.05), with a comparatively smaller impact on the small intestine. Furthermore, MCE supplementation significantly increased the relative abundance of Ruminococcaceae and Alistipes in the large intestine, along with beneficial genera that promote short-chain fatty acid (SCFA) production, thus optimizing the gut microecological environment. Correlation analysis of SCFAs further confirmed a significant association between the enriched microbiota and the production of acetate, propionate, and butyrate (<i>p</i> < 0.05). In conclusion, dietary supplementation with MCE promotes healthy growth and feed intake in broilers and exhibits anti-inflammatory and antioxidant effects. By optimizing gut microbiota composition, enhancing intestinal barrier function, and promoting SCFA production, MCE effectively maintains gut microecological balance, supporting broiler intestinal health.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 12","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12122647","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to evaluate the effects of Mosla chinensis extract (MCE) on broiler intestinal health. A total of 240 1-day-old Arbor Acres (AA) broilers (balanced for sex) were randomly allocated into four treatment groups, each with six replicates of 10 chickens. The study comprised a starter phase (days 1-21) and a grower phase (days 22-42). The control group (C) received a basal diet, while the experimental groups were supplemented with low (S1, 500 mg/kg), medium (S2, 1000 mg/kg), and high doses (S3, 2000 mg/kg) of MCE. The results showed that MCE supplementation significantly improved average daily gain in broilers (p < 0.05) and reduced the feed-to-gain ratio in broilers. Additionally, MCE enhanced the anti-inflammatory and antioxidant capacity of broilers. In the duodenum and cecum, MCE significantly upregulated the expression of tight junction proteins Claudin-1, and Occludin, with the high-dose group showing the strongest effect on intestinal barrier protection (p < 0.05). There was no significant difference in ZO-1 in dudenum (p > 0.05). Microbial analysis indicated that MCE supplementation significantly reduced the Chao and Sobs indices in both the small and large intestines (p < 0.05). At the same time, the Coverage index of the small intestine increased, with the high-dose group demonstrating the most pronounced effect. Beta diversity analysis revealed that MCE had a significant modulatory effect on the microbial composition in the large intestine (p < 0.05), with a comparatively smaller impact on the small intestine. Furthermore, MCE supplementation significantly increased the relative abundance of Ruminococcaceae and Alistipes in the large intestine, along with beneficial genera that promote short-chain fatty acid (SCFA) production, thus optimizing the gut microecological environment. Correlation analysis of SCFAs further confirmed a significant association between the enriched microbiota and the production of acetate, propionate, and butyrate (p < 0.05). In conclusion, dietary supplementation with MCE promotes healthy growth and feed intake in broilers and exhibits anti-inflammatory and antioxidant effects. By optimizing gut microbiota composition, enhancing intestinal barrier function, and promoting SCFA production, MCE effectively maintains gut microecological balance, supporting broiler intestinal health.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信