Blended soil amendments: A viable strategy to reduce soluble phosphorus in soils.

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Darshani Kumaragamage, Haven Soto, Emily Van, Douglas Goltz, Inoka Amarakoon
{"title":"Blended soil amendments: A viable strategy to reduce soluble phosphorus in soils.","authors":"Darshani Kumaragamage, Haven Soto, Emily Van, Douglas Goltz, Inoka Amarakoon","doi":"10.1002/jeq2.20673","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) loss from soils can contribute significantly toward P enrichment in water bodies, impairing water quality. Application of soil amendments is a viable strategy to decrease soluble P in surface soils. Since soluble P is reduced through different mechanisms that are amendment-specific, blended amendments could be a better approach than single amendment applications; however, very little information is available on blended amendment effects in reducing P loss from soils. We compared the effectiveness of gypsum (CaSO<sub>4</sub>·2H<sub>2</sub>O), Epsom salt (MgSO<sub>4</sub>·7H<sub>2</sub>O), and alum [Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·18H<sub>2</sub>O] applied singly or blended in different ratios in reducing water-extractable P (WEP) and Mehlich-3 P of two soils (0- to 15-cm depth) with contrasting P status (Mehlich-3 P of 7.1 mg kg<sup>-1</sup> and 202 mg kg<sup>-1</sup>) from the Red River Valley region in MB, Canada. Ten treatments used for the laboratory incubation study were unamended control, gypsum or Epsom salt at 2.5 or 5 Mg ha<sup>-1</sup>, alum at 2.5 Mg ha<sup>-1</sup>, and four blended treatments of gypsum: alum or Epsom salt: alum at 1:1 or 2:1. Treated soils were saturated and incubated for 2 weeks and analyzed for WEP (an indicator of risk of P loss) and Mehlich-3 P (plant-available P) concentrations. All amendments significantly reduced the WEP concentrations compared to control in both soils. The blended amendments, particularly gypsum-alum blends, performed better than unblended amendments in reducing the potential risk of P loss. Mehlich-3 P concentration was not influenced by amended treatments, suggesting no significant decrease in plant-available P with amendments in both soils.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.20673","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus (P) loss from soils can contribute significantly toward P enrichment in water bodies, impairing water quality. Application of soil amendments is a viable strategy to decrease soluble P in surface soils. Since soluble P is reduced through different mechanisms that are amendment-specific, blended amendments could be a better approach than single amendment applications; however, very little information is available on blended amendment effects in reducing P loss from soils. We compared the effectiveness of gypsum (CaSO4·2H2O), Epsom salt (MgSO4·7H2O), and alum [Al2(SO4)3·18H2O] applied singly or blended in different ratios in reducing water-extractable P (WEP) and Mehlich-3 P of two soils (0- to 15-cm depth) with contrasting P status (Mehlich-3 P of 7.1 mg kg-1 and 202 mg kg-1) from the Red River Valley region in MB, Canada. Ten treatments used for the laboratory incubation study were unamended control, gypsum or Epsom salt at 2.5 or 5 Mg ha-1, alum at 2.5 Mg ha-1, and four blended treatments of gypsum: alum or Epsom salt: alum at 1:1 or 2:1. Treated soils were saturated and incubated for 2 weeks and analyzed for WEP (an indicator of risk of P loss) and Mehlich-3 P (plant-available P) concentrations. All amendments significantly reduced the WEP concentrations compared to control in both soils. The blended amendments, particularly gypsum-alum blends, performed better than unblended amendments in reducing the potential risk of P loss. Mehlich-3 P concentration was not influenced by amended treatments, suggesting no significant decrease in plant-available P with amendments in both soils.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of environmental quality
Journal of environmental quality 环境科学-环境科学
CiteScore
4.90
自引率
8.30%
发文量
123
审稿时长
3 months
期刊介绍: Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring. Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信