Xia Zhao, Haifeng Zhang, Yangyang Liu, Li Li, Haitao Wei
{"title":"Study on the metastatic mechanism of LINC00115 in adenocarcinoma of the Esophagogastric junction.","authors":"Xia Zhao, Haifeng Zhang, Yangyang Liu, Li Li, Haitao Wei","doi":"10.1093/hmg/ddae193","DOIUrl":null,"url":null,"abstract":"<p><p>Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis. Utilizing cell counting kit-8 (CCK-8) assays, colony formation experiments, wound healing assays, flow cytometry for apoptosis and cell cycle analysis, and Transwell assays, we have confirmed that LINC00115 significantly promotes proliferation, migration, and invasion of AEG cells in vitro. Animal experiments further validate the role of LINC00115 in promoting tumor growth and metastasis in vivo. Additionally, our nuclear-cytoplasmic fractionation experiments and RNA fluorescence in situ hybridization (FISH) reveal that LINC00115, along with its interacting protein KH-Type splicing regulatory protein (KHSRP), predominantly localizes to the cell nucleus. By conducting RNA pull-down assays and mass spectrometry (MS) analysis, we have identified a direct interaction between LINC00115 and KHSRP protein and further determined their binding sites through catRAPID and ENCORI databases. This study provides evidence of LINC00115 as a novel biomarker and potential therapeutic target for AEG and offers a fresh perspective on understanding the molecular mechanisms of AEG metastasis.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae193","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adenocarcinoma of the esophagogastric junction (AEG) is a common and deadly cancer, and an in-depth investigation of its molecular mechanisms of metastasis is crucial for discovering new therapeutic targets. This study explores the role of the long non-coding RNA (lncRNA) LINC00115 in AEG metastasis and its underlying mechanisms. Through the analysis of 108 pairs of AEG cancer tissues and matched adjacent tissues, we found a significant upregulation of LINC00115 in AEG tissues, closely associated with TNM staging and lymph node metastasis. Utilizing cell counting kit-8 (CCK-8) assays, colony formation experiments, wound healing assays, flow cytometry for apoptosis and cell cycle analysis, and Transwell assays, we have confirmed that LINC00115 significantly promotes proliferation, migration, and invasion of AEG cells in vitro. Animal experiments further validate the role of LINC00115 in promoting tumor growth and metastasis in vivo. Additionally, our nuclear-cytoplasmic fractionation experiments and RNA fluorescence in situ hybridization (FISH) reveal that LINC00115, along with its interacting protein KH-Type splicing regulatory protein (KHSRP), predominantly localizes to the cell nucleus. By conducting RNA pull-down assays and mass spectrometry (MS) analysis, we have identified a direct interaction between LINC00115 and KHSRP protein and further determined their binding sites through catRAPID and ENCORI databases. This study provides evidence of LINC00115 as a novel biomarker and potential therapeutic target for AEG and offers a fresh perspective on understanding the molecular mechanisms of AEG metastasis.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.