Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application.
Jinyoung Kim, Min-Hee Kim, Dong-Jun Lim, Hankyeol Lee, Jae Jun Lee, Hyuk-Sang Kwon, Mee Kyoung Kim, Ki-Ho Song, Tae-Jung Kim, So Lyung Jung, Yong Oh Lee, Ki-Hyun Baek
{"title":"Deep Learning Technology for Classification of Thyroid Nodules Using Multi-View Ultrasound Images: Potential Benefits and Challenges in Clinical Application.","authors":"Jinyoung Kim, Min-Hee Kim, Dong-Jun Lim, Hankyeol Lee, Jae Jun Lee, Hyuk-Sang Kwon, Mee Kyoung Kim, Ki-Ho Song, Tae-Jung Kim, So Lyung Jung, Yong Oh Lee, Ki-Hyun Baek","doi":"10.3803/EnM.2024.2058","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.</p><p><strong>Methods: </strong>This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) -ResNet, DenseNet, and EfficientNet-were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.</p><p><strong>Results: </strong>Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.</p><p><strong>Conclusion: </strong>CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.</p>","PeriodicalId":11636,"journal":{"name":"Endocrinology and Metabolism","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3803/EnM.2024.2058","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to evaluate the applicability of deep learning technology to thyroid ultrasound images for classification of thyroid nodules.
Methods: This retrospective analysis included ultrasound images of patients with thyroid nodules investigated by fine-needle aspiration at the thyroid clinic of a single center from April 2010 to September 2012. Thyroid nodules with cytopathologic results of Bethesda category V (suspicious for malignancy) or VI (malignant) were defined as thyroid cancer. Multiple deep learning algorithms based on convolutional neural networks (CNNs) -ResNet, DenseNet, and EfficientNet-were utilized, and Siamese neural networks facilitated multi-view analysis of paired transverse and longitudinal ultrasound images.
Results: Among 1,048 analyzed thyroid nodules from 943 patients, 306 (29%) were identified as thyroid cancer. In a subgroup analysis of transverse and longitudinal images, longitudinal images showed superior prediction ability. Multi-view modeling, based on paired transverse and longitudinal images, significantly improved the model performance; with an accuracy of 0.82 (95% confidence intervals [CI], 0.80 to 0.86) with ResNet50, 0.83 (95% CI, 0.83 to 0.88) with DenseNet201, and 0.81 (95% CI, 0.79 to 0.84) with EfficientNetv2_ s. Training with high-resolution images obtained using the latest equipment tended to improve model performance in association with increased sensitivity.
Conclusion: CNN algorithms applied to ultrasound images demonstrated substantial accuracy in thyroid nodule classification, indicating their potential as valuable tools for diagnosing thyroid cancer. However, in real-world clinical settings, it is important to aware that model performance may vary depending on the quality of images acquired by different physicians and imaging devices.
期刊介绍:
The aim of this journal is to set high standards of medical care by providing a forum for discussion for basic, clinical, and translational researchers and clinicians on new findings in the fields of endocrinology and metabolism. Endocrinology and Metabolism reports new findings and developments in all aspects of endocrinology and metabolism. The topics covered by this journal include bone and mineral metabolism, cytokines, developmental endocrinology, diagnostic endocrinology, endocrine research, dyslipidemia, endocrine regulation, genetic endocrinology, growth factors, hormone receptors, hormone action and regulation, management of endocrine diseases, clinical trials, epidemiology, molecular endocrinology, neuroendocrinology, neuropeptides, neurotransmitters, obesity, pediatric endocrinology, reproductive endocrinology, signal transduction, the anatomy and physiology of endocrine organs (i.e., the pituitary, thyroid, parathyroid, and adrenal glands, and the gonads), and endocrine diseases (diabetes, nutrition, osteoporosis, etc.).