{"title":"Comparative Analysis of Needleless and Needle-Based Electrospinning Methods for Polyamide 6: A Technical Note.","authors":"Arash Yavari, Takaaki Ito, Kouji Hara, Kohei Tahara","doi":"10.1248/cpb.c24-00611","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study. Notably, a 2 : 1 acetic acid : formic acid solvent mixture yielded the largest fiber diameters among the solvent systems assessed for needleless electrospinning. These results underscore the potential of PA6 nanofibers in pharmaceutical applications, suggesting that further optimization of electrospinning conditions could enhance their suitability. The study also discusses the implications of scale-up production using needleless technology, highlighting its viability for industrial applications over single-needle electrospinning.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 1","pages":"18-24"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c24-00611","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study. Notably, a 2 : 1 acetic acid : formic acid solvent mixture yielded the largest fiber diameters among the solvent systems assessed for needleless electrospinning. These results underscore the potential of PA6 nanofibers in pharmaceutical applications, suggesting that further optimization of electrospinning conditions could enhance their suitability. The study also discusses the implications of scale-up production using needleless technology, highlighting its viability for industrial applications over single-needle electrospinning.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.