Association between estimated glucose disposal rate and cardiovascular diseases in patients with diabetes or prediabetes: a cross-sectional study.

IF 8.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Jinhao Liao, Linjie Wang, Lian Duan, Fengying Gong, Huijuan Zhu, Hui Pan, Hongbo Yang
{"title":"Association between estimated glucose disposal rate and cardiovascular diseases in patients with diabetes or prediabetes: a cross-sectional study.","authors":"Jinhao Liao, Linjie Wang, Lian Duan, Fengying Gong, Huijuan Zhu, Hui Pan, Hongbo Yang","doi":"10.1186/s12933-024-02570-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Insulin resistance proxy indicators are significantly associated with cardiovascular disease (CVD) and diabetes. However, the correlations between the estimated glucose disposal rate (eGDR) index and CVD and its subtypes have yet to be thoroughly researched.</p><p><strong>Methods: </strong>10,690 respondents with diabetes and prediabetes from the NHANES 1999-2016 were enrolled in the study. Three machine learning methods (SVM-RFE, XGBoost, and Boruta algorithms) were employed to select the most critical variables. Logistic regression models were established to evaluate the association between eGDR and CVD. We applied ROC curves, C-statistics, NRI, IDI, calibration curves, and DCA curves to assess model performance. Subgroup analyses were conducted to investigate the association among different subgroups.</p><p><strong>Results: </strong>Participants in the higher quartile showed a decreased prevalence of CVD. Multivariate logistic regression models and RCS curves demonstrated that eGDR had an independently negative linear correlation with the likelihood of CVD[Q4 vs. Q1: OR 0.24(0.18,0.32)], CAD[OR 0.81(0.78,0.85)], CHF[OR 0.81(0.76,0.86)], and stroke[0.85(0.80,0.90)]. Model evaluation showed better performance in fully adjusted models than basic models[C-statistics(Model 3 vs. Model 1): CVD(0.683 vs. 0.814), CAD(0.672 vs. 0.807), CHF(0.714 vs. 0.839) and stroke(0.660 vs. 0.790)]. The AUCs of eGDR were significantly higher than the values of other IR surrogates in the unadjusted models, and slightly higher in the fully adjusted models. Subgroup analyses indicated that the results were robust.</p><p><strong>Conclusion: </strong>A lower eGDR was significantly associated with a heightened likelihood of CVD and its subtypes in diabetic and prediabetic populations. And eGDR exhibited better performance in evaluating the associations compared to other IR proxies encompassing TyG, HOMA-IR, QCUIKI, METS-IR, etc.</p>","PeriodicalId":9374,"journal":{"name":"Cardiovascular Diabetology","volume":"24 1","pages":"13"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Diabetology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12933-024-02570-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Insulin resistance proxy indicators are significantly associated with cardiovascular disease (CVD) and diabetes. However, the correlations between the estimated glucose disposal rate (eGDR) index and CVD and its subtypes have yet to be thoroughly researched.

Methods: 10,690 respondents with diabetes and prediabetes from the NHANES 1999-2016 were enrolled in the study. Three machine learning methods (SVM-RFE, XGBoost, and Boruta algorithms) were employed to select the most critical variables. Logistic regression models were established to evaluate the association between eGDR and CVD. We applied ROC curves, C-statistics, NRI, IDI, calibration curves, and DCA curves to assess model performance. Subgroup analyses were conducted to investigate the association among different subgroups.

Results: Participants in the higher quartile showed a decreased prevalence of CVD. Multivariate logistic regression models and RCS curves demonstrated that eGDR had an independently negative linear correlation with the likelihood of CVD[Q4 vs. Q1: OR 0.24(0.18,0.32)], CAD[OR 0.81(0.78,0.85)], CHF[OR 0.81(0.76,0.86)], and stroke[0.85(0.80,0.90)]. Model evaluation showed better performance in fully adjusted models than basic models[C-statistics(Model 3 vs. Model 1): CVD(0.683 vs. 0.814), CAD(0.672 vs. 0.807), CHF(0.714 vs. 0.839) and stroke(0.660 vs. 0.790)]. The AUCs of eGDR were significantly higher than the values of other IR surrogates in the unadjusted models, and slightly higher in the fully adjusted models. Subgroup analyses indicated that the results were robust.

Conclusion: A lower eGDR was significantly associated with a heightened likelihood of CVD and its subtypes in diabetic and prediabetic populations. And eGDR exhibited better performance in evaluating the associations compared to other IR proxies encompassing TyG, HOMA-IR, QCUIKI, METS-IR, etc.

糖尿病或糖尿病前期患者的估计葡萄糖处置率与心血管疾病之间的关系:一项横断面研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Diabetology
Cardiovascular Diabetology 医学-内分泌学与代谢
CiteScore
12.30
自引率
15.10%
发文量
240
审稿时长
1 months
期刊介绍: Cardiovascular Diabetology is a journal that welcomes manuscripts exploring various aspects of the relationship between diabetes, cardiovascular health, and the metabolic syndrome. We invite submissions related to clinical studies, genetic investigations, experimental research, pharmacological studies, epidemiological analyses, and molecular biology research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信