Jie Huang, Xingyuan Hou, Ni Zhou, Nan Su, Shanshan Wei, Yuanying Yang, Taoli Sun, Guangdi Li, Wenqun Li, Bikui Zhang
{"title":"Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.","authors":"Jie Huang, Xingyuan Hou, Ni Zhou, Nan Su, Shanshan Wei, Yuanying Yang, Taoli Sun, Guangdi Li, Wenqun Li, Bikui Zhang","doi":"10.1007/s10557-024-07665-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).</p><p><strong>Methods: </strong>DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln. RNA sequencing (RNA-seq) was employed to explore the mechanism of PAGln in DIC. Subsequently, the differentially expressed genes (DEGs) were subjected to comprehensive analysis using diverse public databases, and RT-PCR was used to confirm the expression levels of the candidate genes. Finally, molecular docking techniques were used for validation.</p><p><strong>Results: </strong>PAGln effectively prevented both in vivo and in vitro Dox-induced myocardial injury and cell apoptosis. RNA-seq results showed that 40 genes were up-regulated and 54 down-regulated in the Dox group compared to the Con group, displaying opposite changes in the Dox + PAGln group. Enrichment analysis highlighted several mechanisms by which PAGln alleviated Dox-induced cardiotoxicity, including the lipid metabolic process, calcium-mediated signaling, positive regulation of store-operated calcium channel activity, and hypertrophic cardiomyopathy. In vitro and in vivo experiments confirmed that PAGln treatment could reverse the changes in the expression levels of Klb, Ece2, Nmnat2, Casq1, Pak1, and Apob in Dox. Molecular docking results showed that these genes had good binding activity with PAGln.</p><p><strong>Conclusions: </strong>PAGln shows potential in alleviating Dox-induced cardiotoxicity, with Ece2 identified as key regulatory molecules related to endothelial dysfunction.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07665-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).
Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln. RNA sequencing (RNA-seq) was employed to explore the mechanism of PAGln in DIC. Subsequently, the differentially expressed genes (DEGs) were subjected to comprehensive analysis using diverse public databases, and RT-PCR was used to confirm the expression levels of the candidate genes. Finally, molecular docking techniques were used for validation.
Results: PAGln effectively prevented both in vivo and in vitro Dox-induced myocardial injury and cell apoptosis. RNA-seq results showed that 40 genes were up-regulated and 54 down-regulated in the Dox group compared to the Con group, displaying opposite changes in the Dox + PAGln group. Enrichment analysis highlighted several mechanisms by which PAGln alleviated Dox-induced cardiotoxicity, including the lipid metabolic process, calcium-mediated signaling, positive regulation of store-operated calcium channel activity, and hypertrophic cardiomyopathy. In vitro and in vivo experiments confirmed that PAGln treatment could reverse the changes in the expression levels of Klb, Ece2, Nmnat2, Casq1, Pak1, and Apob in Dox. Molecular docking results showed that these genes had good binding activity with PAGln.
Conclusions: PAGln shows potential in alleviating Dox-induced cardiotoxicity, with Ece2 identified as key regulatory molecules related to endothelial dysfunction.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.