Special Collection: Drug Discovery in France Targeting Tumor-Associated Carbonic Anhydrases in Photothermal Therapy.

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL
ChemMedChem Pub Date : 2025-01-14 DOI:10.1002/cmdc.202400893
Sébastien Clément, Sébastien Richeter, Jean-Yves Winum
{"title":"Special Collection: Drug Discovery in France Targeting Tumor-Associated Carbonic Anhydrases in Photothermal Therapy.","authors":"Sébastien Clément, Sébastien Richeter, Jean-Yves Winum","doi":"10.1002/cmdc.202400893","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis. Recent advances in the design of hCA-targeted photothermal agents have shown promise in selectively targeting and ablating cancer cells while sparing healthy tissues. We explore here recent advancements in developing combination therapies that integrate hCA-targeted strategies with PTT for tumor treatment. By focusing on tumor-associated isoforms hCA IX and hCA XII, we underscore the potential of hCA inhibition to enhance both the efficacy and specificity of PTT in cancer therapy. We also address critical challenges and outline future directions, emphasizing the need to improve the biocompatibility, stability, and clinical translation of hCA-targeted photothermal agents. This mini review highlights the promise of combining hCA inhibition with PTT as an innovative therapeutic approach, aiming to advance more precise and effective cancer treatments.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400893"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400893","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis. Recent advances in the design of hCA-targeted photothermal agents have shown promise in selectively targeting and ablating cancer cells while sparing healthy tissues. We explore here recent advancements in developing combination therapies that integrate hCA-targeted strategies with PTT for tumor treatment. By focusing on tumor-associated isoforms hCA IX and hCA XII, we underscore the potential of hCA inhibition to enhance both the efficacy and specificity of PTT in cancer therapy. We also address critical challenges and outline future directions, emphasizing the need to improve the biocompatibility, stability, and clinical translation of hCA-targeted photothermal agents. This mini review highlights the promise of combining hCA inhibition with PTT as an innovative therapeutic approach, aiming to advance more precise and effective cancer treatments.

特别收藏:法国光热治疗中靶向肿瘤相关碳酸酐酶的药物发现。
肿瘤相关的人碳酸酐酶(hCAs),特别是同工酶 hCA IX 和 hCA XII,在实体瘤的缺氧区域过度表达,在调节 pH 平衡、促进癌细胞存活和增强侵袭性方面发挥着至关重要的作用。这些酶已成为癌症治疗中很有前景的治疗靶点,包括光热疗法(PTT)。光热疗法是一种微创技术,利用光吸收剂将近红外线(NIR)转化为热量,有效诱导局部热疗,促进癌细胞凋亡。最近在设计 hCA 靶向光热制剂方面取得的进展表明,这种制剂有望选择性地靶向和消融癌细胞,同时保护健康组织。在此,我们将探讨开发将 hCA 靶向策略与 PTT 结合用于肿瘤治疗的组合疗法的最新进展。通过重点研究与肿瘤相关的同工酶 hCA IX 和 hCA XII,我们强调了抑制 hCA 在提高 PTT 治疗癌症的疗效和特异性方面的潜力。我们还讨论了关键挑战并概述了未来的发展方向,强调需要改善 hCA 靶向光热制剂的生物相容性、稳定性和临床应用。这篇微型综述强调了将 hCA 抑制与 PTT 结合起来作为一种创新治疗方法的前景,旨在推动更精确、更有效的癌症治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信