Yuchien Hsu, Yunjiao He, Xiao Zhao, Feilong Wang, Fan Yang, Yufeng Zheng, Yongsheng Zhou, Dandan Xia, Yunsong Liu
{"title":"Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.","authors":"Yuchien Hsu, Yunjiao He, Xiao Zhao, Feilong Wang, Fan Yang, Yufeng Zheng, Yongsheng Zhou, Dandan Xia, Yunsong Liu","doi":"10.1002/advs.202409051","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn<sup>2+</sup> plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys. The zinc-lithium (Zn-Li) substrate is encapsulated with PCL, reducing Zn<sup>2+</sup> release and maintaing biocompatibility. Controlled Zn<sup>2+</sup> release and mild photothermal therapy via CuS nanoparticles promoted osteogenesis. In vitro studies demonstrated enhanced cell proliferation and osteogenic differentiation. In vivo Micro-Computed Tomography (Micro-CT), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and immunohistochemical analyses confirmed improved osseointegration. Mechanistic studies using RNA sequencing and Western blotting revealed that the coating promotes osteogenesis by activating the Wnt/β-catenin and inhibiting NF-κB pathways. This NIR light-controlled PCL/CuS coating successfully regulates Zn alloy degradation, enhances osseointegration via controlled Zn<sup>2+</sup> release and mild photothermal therapy effct, presenting a promising avenue for orthopedic biomaterials.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2409051"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn2+ plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys. The zinc-lithium (Zn-Li) substrate is encapsulated with PCL, reducing Zn2+ release and maintaing biocompatibility. Controlled Zn2+ release and mild photothermal therapy via CuS nanoparticles promoted osteogenesis. In vitro studies demonstrated enhanced cell proliferation and osteogenic differentiation. In vivo Micro-Computed Tomography (Micro-CT), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and immunohistochemical analyses confirmed improved osseointegration. Mechanistic studies using RNA sequencing and Western blotting revealed that the coating promotes osteogenesis by activating the Wnt/β-catenin and inhibiting NF-κB pathways. This NIR light-controlled PCL/CuS coating successfully regulates Zn alloy degradation, enhances osseointegration via controlled Zn2+ release and mild photothermal therapy effct, presenting a promising avenue for orthopedic biomaterials.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.