Mannose Promotes β-Amyloid Pathology by Regulating BACE1 Glycosylation in Alzheimer's Disease.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chensi Liang, Ziqi Yuan, Shangchen Yang, Yufei Zhu, Zhenlei Chen, Dan Can, Aiyu Lei, Huifang Li, Lige Leng, Jie Zhang
{"title":"Mannose Promotes β-Amyloid Pathology by Regulating BACE1 Glycosylation in Alzheimer's Disease.","authors":"Chensi Liang, Ziqi Yuan, Shangchen Yang, Yufei Zhu, Zhenlei Chen, Dan Can, Aiyu Lei, Huifang Li, Lige Leng, Jie Zhang","doi":"10.1002/advs.202409105","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression. Chronic mannose overload increases β-amyloid (Aβ) burdens and exacerbates cognitive impairments, which are reversed by a mannose-free diet or mannose transporter antagonists. Mechanistically, single-cell RNA sequencing and metabolomics suggested that mannose-mediated N-glycosylation of BACE1 and Nicastrin enhances their protein stability, promoting Aβ production. Additionally, reduced mannose intake decreased BACE1 and Nicastrin stability, ultimately lowering Aβ production and mitigating AD pathology. this results highlight that high-dose mannose consumption may exacerbate AD pathogenesis. Restricting dietary mannose may have therapeutic benefits.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2409105"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409105","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperglycemia accelerates Alzheimer's disease (AD) progression, yet the role of monosaccharides remains unclear. Here, it is demonstrated that mannose, a hexose, closely correlates with the pathological characteristics of AD, as confirmed by measuring mannose levels in the brains and serum of AD mice, as well as in the serum of AD patients. AD mice are given mannose by intra-cerebroventricular injection (ICV) or in drinking water to investigate the effects of mannose on cognition and AD pathological progression. Chronic mannose overload increases β-amyloid (Aβ) burdens and exacerbates cognitive impairments, which are reversed by a mannose-free diet or mannose transporter antagonists. Mechanistically, single-cell RNA sequencing and metabolomics suggested that mannose-mediated N-glycosylation of BACE1 and Nicastrin enhances their protein stability, promoting Aβ production. Additionally, reduced mannose intake decreased BACE1 and Nicastrin stability, ultimately lowering Aβ production and mitigating AD pathology. this results highlight that high-dose mannose consumption may exacerbate AD pathogenesis. Restricting dietary mannose may have therapeutic benefits.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信