Direct measurement of brake wear particles from a light-duty vehicle under real-world driving conditions.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES
Tawfiq Al Wasif-Ruiz, Ricardo Suárez-Bertoa, José Alberto Sánchez-Martín, Carmen Cecilia Barrios-Sánchez
{"title":"Direct measurement of brake wear particles from a light-duty vehicle under real-world driving conditions.","authors":"Tawfiq Al Wasif-Ruiz, Ricardo Suárez-Bertoa, José Alberto Sánchez-Martín, Carmen Cecilia Barrios-Sánchez","doi":"10.1007/s11356-024-35879-y","DOIUrl":null,"url":null,"abstract":"<p><p>As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility. Studying emissions from vehicles in real-world scenarios provides a better understanding of their environmental impact compared to laboratory testing alone. This study presents findings on the direct measurement of brake particles and the characterization of this source of particulate matter in real-world conditions using a mobile laboratory. In situ measurements of particle concentration and size distribution showed good agreement with previous laboratory studies, indicating the suitability of the approach to investigate break particle emissions during real-world operation. The study demonstrates that particle size distributions can vary based on the temperature of the brake disk, which is influenced by the initial braking speed, with significant variations observed between speeds of 60, 80, 100, and 120 km/h. Particles with sizes between 6 and 523 nm were released into the air from the brake system, although it is likely that larger particles were also emitted but not captured due to the upper detection limit of the Engine Exhaust Particle Sizer. During harsh braking events, such as decelerations of 4.2 m/s<sup>2</sup> from 120 km/h, a concentration of up 10<sup>6</sup> (#/cm<sup>3</sup>) was measured for particles under 8 nm. Moreover, scanning electron microscope analysis revealed that nanoparticles are present in the form of agglomerates, whose shape can change depending on the formation process. Elements present in the particles comprised mainly iron, copper, and aluminium, indicating wear of the brake pad materials and disk components.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35879-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility. Studying emissions from vehicles in real-world scenarios provides a better understanding of their environmental impact compared to laboratory testing alone. This study presents findings on the direct measurement of brake particles and the characterization of this source of particulate matter in real-world conditions using a mobile laboratory. In situ measurements of particle concentration and size distribution showed good agreement with previous laboratory studies, indicating the suitability of the approach to investigate break particle emissions during real-world operation. The study demonstrates that particle size distributions can vary based on the temperature of the brake disk, which is influenced by the initial braking speed, with significant variations observed between speeds of 60, 80, 100, and 120 km/h. Particles with sizes between 6 and 523 nm were released into the air from the brake system, although it is likely that larger particles were also emitted but not captured due to the upper detection limit of the Engine Exhaust Particle Sizer. During harsh braking events, such as decelerations of 4.2 m/s2 from 120 km/h, a concentration of up 106 (#/cm3) was measured for particles under 8 nm. Moreover, scanning electron microscope analysis revealed that nanoparticles are present in the form of agglomerates, whose shape can change depending on the formation process. Elements present in the particles comprised mainly iron, copper, and aluminium, indicating wear of the brake pad materials and disk components.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信