Band Tailoring Enabled Perovskite Devices for X-Ray to Near-Infrared Photodetection.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi-Chu He, Guan-Hua Dun, Jun Deng, Jia-Li Peng, Ken Qin, Jia-He Zhang, Xiang-Shun Geng, Min-Shu Zhang, Ze-Shu Wang, Yan Xie, Zhao-Qiang Bai, Dan Xie, He Tian, Yi Yang, Tian-Ling Ren
{"title":"Band Tailoring Enabled Perovskite Devices for X-Ray to Near-Infrared Photodetection.","authors":"Yi-Chu He, Guan-Hua Dun, Jun Deng, Jia-Li Peng, Ken Qin, Jia-He Zhang, Xiang-Shun Geng, Min-Shu Zhang, Ze-Shu Wang, Yan Xie, Zhao-Qiang Bai, Dan Xie, He Tian, Yi Yang, Tian-Ling Ren","doi":"10.1002/advs.202414259","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity. To address this, this study have designed a type-II FAPbI<sub>3</sub> perovskite-based heterojunction featuring a large energy band offset utilizing narrow bandgap tellurium (Te) semiconductor. This innovative design broadens the detection range into the infrared while simultaneously reducing dark current noise. As-designed device allows for the detection of near infrared band, achieving a detectivity of 6.8 × 10<sup>9</sup> Jones at 1550 nm. The low dark current enables X-ray sensitivity of up to 1885.1 µC Gy⁻¹ cm⁻<sup>2</sup>. First-principles calculations confirm the type-II band structure alignment of the heterojunction, and a self-driven response behavior is realized. Moreover, this study have developed a scalable 40 × 1 sensor array, demonstrating the potential for wide-spectrum imaging applications. This work is expected to advance the application of perovskite-based wide-spectrum devices.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414259"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414259","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity. To address this, this study have designed a type-II FAPbI3 perovskite-based heterojunction featuring a large energy band offset utilizing narrow bandgap tellurium (Te) semiconductor. This innovative design broadens the detection range into the infrared while simultaneously reducing dark current noise. As-designed device allows for the detection of near infrared band, achieving a detectivity of 6.8 × 109 Jones at 1550 nm. The low dark current enables X-ray sensitivity of up to 1885.1 µC Gy⁻¹ cm⁻2. First-principles calculations confirm the type-II band structure alignment of the heterojunction, and a self-driven response behavior is realized. Moreover, this study have developed a scalable 40 × 1 sensor array, demonstrating the potential for wide-spectrum imaging applications. This work is expected to advance the application of perovskite-based wide-spectrum devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信