Haopan Sun, Ning Gan, Yuqing Lin, Baolong Wu, Yulong Qiu, Jingwen Su, Ziding Zhou, Fengyin Zou, Jianguo Yu, Hideto Matsuyama
{"title":"Ultramicroporous Tröger's Base Framework Membranes With Ionized Sub-nanochannels for Efficient Acid/Alkali Recovery.","authors":"Haopan Sun, Ning Gan, Yuqing Lin, Baolong Wu, Yulong Qiu, Jingwen Su, Ziding Zhou, Fengyin Zou, Jianguo Yu, Hideto Matsuyama","doi":"10.1002/advs.202414280","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process. The intrinsic ultramicropore confinement and quaternary ammonium-charged functional groups provide ultrahigh size-sieving capability and enhanced Donnan exclusion for H⁺/OH⁻ selectivity; meanwhile, the internal protoplasmic channels of the polymer frameworks serve as highways for rapid ion transfer. The resulting membrane achieves high H⁺/Fe<sup>2</sup>⁺ and OH⁻/WO₄<sup>2</sup>⁻ selectivities of 694.4 and 181.0, respectively, for concurrent acid and alkali separation in diffusion dialysis and electrodialysis processes over extended operational periods (exceeding 1600 and 600 h, respectively), while maintaining remarkable transport rates. These results outperform most literature-reported and nearly all commercially available membranes. This study validates the novel applicability of polymer framework materials with ionized angstrom-scale channels and versatile functionalities in high-performance IEMs for acid/alkali resource recovery.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414280"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414280","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process. The intrinsic ultramicropore confinement and quaternary ammonium-charged functional groups provide ultrahigh size-sieving capability and enhanced Donnan exclusion for H⁺/OH⁻ selectivity; meanwhile, the internal protoplasmic channels of the polymer frameworks serve as highways for rapid ion transfer. The resulting membrane achieves high H⁺/Fe2⁺ and OH⁻/WO₄2⁻ selectivities of 694.4 and 181.0, respectively, for concurrent acid and alkali separation in diffusion dialysis and electrodialysis processes over extended operational periods (exceeding 1600 and 600 h, respectively), while maintaining remarkable transport rates. These results outperform most literature-reported and nearly all commercially available membranes. This study validates the novel applicability of polymer framework materials with ionized angstrom-scale channels and versatile functionalities in high-performance IEMs for acid/alkali resource recovery.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.