The Type III Secretion System (T3SS) of Escherichia Coli Promotes Atherosclerosis in Type 2 Diabetes Mellitus.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yao-Yuan Zhang, Song-Tao Chen, Gang Chen, Le Zhou, Guo-Liang Zhou, Xin-Yuan Yu, Long Yuan, Wei-Qian Deng, Zhen-Bo Wang, Jing Li, Yi-Fu Tu, Da-Wei Zhang, Yuan Li, Abdul Sammad, Xiao Zhu, Kai Yin
{"title":"The Type III Secretion System (T3SS) of Escherichia Coli Promotes Atherosclerosis in Type 2 Diabetes Mellitus.","authors":"Yao-Yuan Zhang, Song-Tao Chen, Gang Chen, Le Zhou, Guo-Liang Zhou, Xin-Yuan Yu, Long Yuan, Wei-Qian Deng, Zhen-Bo Wang, Jing Li, Yi-Fu Tu, Da-Wei Zhang, Yuan Li, Abdul Sammad, Xiao Zhu, Kai Yin","doi":"10.1002/advs.202413296","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability. Non-targeted metabolomic and proteomic analysis of mouse serum showed that T3SS caused abnormal glycerophospholipid metabolism in mice. Proteomics, RNA sequencing, and functional analyses showed that T3SS induced ferroptosis in intestinal epithelial cells, partly due to increased expression of ferritin heavy chains (FTH1). This findings first demonstrated that T3SS increases ferroptosis in intestinal epithelial cells, via disrupting the intestinal barrier and upregulation of phosphatidylcholine, thereby exacerbating T2DM-related ASCVD.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413296"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413296","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale studies indicate a strong relationship between the gut microbiome, type 2 diabetes mellitus (T2DM), and atherosclerotic cardiovascular disease (ASCVD). Here, a higher abundance of the type III secretion system (T3SS) virulence factors of Enterobacteriaceae/Escherichia-Shigella in patients with T2DM-related-ASCVD, which correlates with their atherosclerotic stenosis is reported. Overexpression of T3SS via Citrobacter rodentium (CR) infection in Apoe-/- T2DM mice exacerbated atherosclerotic lesion formation and increased gut permeability. Non-targeted metabolomic and proteomic analysis of mouse serum showed that T3SS caused abnormal glycerophospholipid metabolism in mice. Proteomics, RNA sequencing, and functional analyses showed that T3SS induced ferroptosis in intestinal epithelial cells, partly due to increased expression of ferritin heavy chains (FTH1). This findings first demonstrated that T3SS increases ferroptosis in intestinal epithelial cells, via disrupting the intestinal barrier and upregulation of phosphatidylcholine, thereby exacerbating T2DM-related ASCVD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信