Tomato Defenses Under Stress: The Impact of Salinity on Direct Defenses Against Insect Herbivores.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Sahil V Pawar, Sujay M Paranjape, Grace K Kalowsky, Michelle Peiffer, Nate McCartney, Jared G Ali, Gary W Felton
{"title":"Tomato Defenses Under Stress: The Impact of Salinity on Direct Defenses Against Insect Herbivores.","authors":"Sahil V Pawar, Sujay M Paranjape, Grace K Kalowsky, Michelle Peiffer, Nate McCartney, Jared G Ali, Gary W Felton","doi":"10.1111/pce.15353","DOIUrl":null,"url":null,"abstract":"<p><p>Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv. Better Boy) impacts the behavior and performance of a devastating insect pest, the tomato fruitworm caterpillar (Helicoverpa zea). Through choice assays and performance experiments, we demonstrate that salt-stressed tomato plants are poor hosts for H. zea, negatively affecting caterpillar feeding preferences and growth rates. While changes in plant nutritional quality were observed, the primary factor influencing insect performance appears to be direct ionic toxicity, which significantly impairs multiple life history parameters of H. zea including survival, pupation, adult emergence, and fecundity. Plant defense responses show complex interactions between salt stress and herbivory, with two proteinase inhibitor genes - PIN2 and AspPI, showing a higher induced response to insect herbivory under salt conditions. However, plant defenses do not seem to be the main driver of reduced caterpillar performance on salt-treated plants. Furthermore, we report reduced oviposition by H. zea moths on salt-treated plants, which was correlated with altered volatile emissions. Our findings reveal that H. zea exhibits optimal host selection behaviours for both larval feeding and adult oviposition decisions, which likely contribute to its success as an agricultural pest. This research provides insights into the complex interactions between abiotic stress, plant physiology, and insect behaviour, with potential implications for pest management strategies in saline agricultural environments.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15353","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv. Better Boy) impacts the behavior and performance of a devastating insect pest, the tomato fruitworm caterpillar (Helicoverpa zea). Through choice assays and performance experiments, we demonstrate that salt-stressed tomato plants are poor hosts for H. zea, negatively affecting caterpillar feeding preferences and growth rates. While changes in plant nutritional quality were observed, the primary factor influencing insect performance appears to be direct ionic toxicity, which significantly impairs multiple life history parameters of H. zea including survival, pupation, adult emergence, and fecundity. Plant defense responses show complex interactions between salt stress and herbivory, with two proteinase inhibitor genes - PIN2 and AspPI, showing a higher induced response to insect herbivory under salt conditions. However, plant defenses do not seem to be the main driver of reduced caterpillar performance on salt-treated plants. Furthermore, we report reduced oviposition by H. zea moths on salt-treated plants, which was correlated with altered volatile emissions. Our findings reveal that H. zea exhibits optimal host selection behaviours for both larval feeding and adult oviposition decisions, which likely contribute to its success as an agricultural pest. This research provides insights into the complex interactions between abiotic stress, plant physiology, and insect behaviour, with potential implications for pest management strategies in saline agricultural environments.

胁迫下番茄的防御:盐度对直接防御食草昆虫的影响。
盐胁迫等非生物胁迫会降低作物产量,如果再加上昆虫食草动物等生物胁迫,则会加剧产量损失。然而,盐分引起的植物质量和防御能力的变化反过来也会影响以植物为食的昆虫食草动物。本研究调查了番茄植物(Solanum Lycopersicum cv. Better Boy)的盐分胁迫如何影响毁灭性害虫番茄果蝇毛虫(Helicoverpa zea)的行为和表现。通过选择测定和性能实验,我们证明盐胁迫番茄植物是 H. zea 的不良寄主,会对毛虫的取食偏好和生长速度产生负面影响。虽然观察到了植物营养质量的变化,但影响昆虫表现的主要因素似乎是直接离子毒性,它显著影响了 H. zea 的多个生活史参数,包括存活、化蛹、成虫出现和繁殖力。植物防御反应显示了盐胁迫与草食性之间复杂的相互作用,在盐胁迫条件下,两个蛋白酶抑制基因--PIN2 和 AspPI--对昆虫草食性的诱导反应较高。然而,植物防御似乎并不是盐处理植物上毛虫表现下降的主要原因。此外,我们还发现 H. zea 蛾在盐处理植物上的产卵量减少,这与挥发性排放的改变有关。我们的研究结果表明,H. zea 在幼虫取食和成虫产卵决策方面都表现出最佳的寄主选择行为,这很可能是其成功成为农业害虫的原因。这项研究深入揭示了非生物胁迫、植物生理和昆虫行为之间复杂的相互作用,对盐碱农业环境中的害虫管理策略具有潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信