Stand Diversity Does Not Mitigate Increased Herbivory on Climate-Matched Oaks in an Assisted Migration Experiment.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Juri A Felix, Philip C Stevenson, Nadia Barsoum, Julia Koricheva
{"title":"Stand Diversity Does Not Mitigate Increased Herbivory on Climate-Matched Oaks in an Assisted Migration Experiment.","authors":"Juri A Felix, Philip C Stevenson, Nadia Barsoum, Julia Koricheva","doi":"10.1111/pce.15383","DOIUrl":null,"url":null,"abstract":"<p><p>Assisted migration is a tree-planting method where tree species or populations are translocated with the aim of establishing more climate-resilient forests. However, this might potentially increase the susceptibility of translocated trees to herbivory. Stand diversification through planting trees in species or genotypic mixtures may reduce the amount of damage by insect pests, but its effectiveness in mitigation of excess herbivory on climate-matched trees has seldom been explored. Using the Climate Match Experiment which manipulates both tree climatic provenance and stand diversity, we compared growth, insect herbivory and leaf traits of pedunculate oaks (Quercus robur) of local and Italian provenances in monocultures, provenance mixtures or species mixtures. Additionally, we investigated whether tree apparency and light availability cause variation in leaf traits and herbivory and tested whether these factors were influenced by stand diversity. We found that Italian oaks were subject to greater herbivore damage than those of local English provenance regardless of stand diversity and that insect herbivory in Italian oaks was higher on more apparent trees. Italian oaks also had lower concentrations of hydrolysable tannins than English oaks, but tannin concentrations were poor predictors of herbivory. Additionally, we show that leaf trait variation is strongly associated with differences in light availability.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15383","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Assisted migration is a tree-planting method where tree species or populations are translocated with the aim of establishing more climate-resilient forests. However, this might potentially increase the susceptibility of translocated trees to herbivory. Stand diversification through planting trees in species or genotypic mixtures may reduce the amount of damage by insect pests, but its effectiveness in mitigation of excess herbivory on climate-matched trees has seldom been explored. Using the Climate Match Experiment which manipulates both tree climatic provenance and stand diversity, we compared growth, insect herbivory and leaf traits of pedunculate oaks (Quercus robur) of local and Italian provenances in monocultures, provenance mixtures or species mixtures. Additionally, we investigated whether tree apparency and light availability cause variation in leaf traits and herbivory and tested whether these factors were influenced by stand diversity. We found that Italian oaks were subject to greater herbivore damage than those of local English provenance regardless of stand diversity and that insect herbivory in Italian oaks was higher on more apparent trees. Italian oaks also had lower concentrations of hydrolysable tannins than English oaks, but tannin concentrations were poor predictors of herbivory. Additionally, we show that leaf trait variation is strongly associated with differences in light availability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信