Proof of the transverse instability of Stokes waves

IF 2.4 1区 数学 Q1 MATHEMATICS
Ryan P. Creedon, Huy Q. Nguyen, Walter A. Strauss
{"title":"Proof of the transverse instability of Stokes waves","authors":"Ryan P. Creedon,&nbsp;Huy Q. Nguyen,&nbsp;Walter A. Strauss","doi":"10.1007/s40818-024-00188-7","DOIUrl":null,"url":null,"abstract":"<div><p>A Stokes wave is a traveling free-surface periodic water wave that is constant in the direction transverse to the direction of propagation. In 1981 McLean discovered via numerical methods that Stokes waves at infinite depth are unstable with respect to transverse perturbations of the initial data. Even for a Stokes wave that has very small amplitude <span>\\(\\varepsilon \\)</span>, we prove rigorously that transverse perturbations, after linearization, will lead to exponential growth in time. To observe this instability, extensive calculations are required all the way up to order <span>\\(O(\\varepsilon ^3)\\)</span>. All previous rigorous results of this type were merely two-dimensional, in the sense that they only treated long-wave perturbations in the longitudinal direction. This is the first rigorous proof of three-dimensional instabilities of Stokes waves.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-024-00188-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A Stokes wave is a traveling free-surface periodic water wave that is constant in the direction transverse to the direction of propagation. In 1981 McLean discovered via numerical methods that Stokes waves at infinite depth are unstable with respect to transverse perturbations of the initial data. Even for a Stokes wave that has very small amplitude \(\varepsilon \), we prove rigorously that transverse perturbations, after linearization, will lead to exponential growth in time. To observe this instability, extensive calculations are required all the way up to order \(O(\varepsilon ^3)\). All previous rigorous results of this type were merely two-dimensional, in the sense that they only treated long-wave perturbations in the longitudinal direction. This is the first rigorous proof of three-dimensional instabilities of Stokes waves.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信