Exploring the effect of aromatic π-spacers on the photophysical properties of triphenylamine and indoline dyes in DSSCs

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sumit Sahil Malhotra, Raj Kumar Saran, Mukhtar Ahmed, Abdullah Saad Alsubaie, Salah M. El-Bahy, Ranjan Kumar Mohapatra, Azaj Ansari
{"title":"Exploring the effect of aromatic π-spacers on the photophysical properties of triphenylamine and indoline dyes in DSSCs","authors":"Sumit Sahil Malhotra,&nbsp;Raj Kumar Saran,&nbsp;Mukhtar Ahmed,&nbsp;Abdullah Saad Alsubaie,&nbsp;Salah M. El-Bahy,&nbsp;Ranjan Kumar Mohapatra,&nbsp;Azaj Ansari","doi":"10.1007/s11082-024-08026-7","DOIUrl":null,"url":null,"abstract":"<div><p>Dye-sensitized solar cells (DSSCs) are positioned as a promising technology to address the rising global demand for clean energy, providing a sustainable option to meet the expanding requirements for eco-friendly energy outputs. The strategic selection of electron-donating/accepting groups, along with the π-bridge, in the design of light-harvesting dyes for DSSCs systematically enhances their photophysical properties to meet efficiency criteria and optimize DSSC performance. This study examines model dyes derived from triphenylamine (TPA) and indoline (IND), designated as TPA1, TPA2, TPA3, IND1, IND2, and IND3, each containing donor, bridge, and acceptor molecular units. The research aims to assess how different π-spacer configurations affect the optical, electronic, and photovoltaic properties critical for DSSCs. Using DFT and TDDFT methods, the study demonstrates that extending π-conjugation (in a D-π-π-A structure) causes a red shift in the absorption spectra by reducing the HOMO–LUMO gap. TPA2 outperformed the other TPA dyes with the highest short-circuit current density (J<sub>sc</sub>) of 1.75 mA cm⁻<sup>2</sup>, while IND2 led the IND series with a Jsc of 0.77 mA cm⁻<sup>2</sup>. Additionally, TPA2 showed superior regeneration kinetics, with the fastest regeneration rate (ΔG<sub>reg</sub> = 0.37 eV) and an open-circuit voltage of 0.88 eV. IND2, though achieving a competitive regeneration rate (ΔG<sub>reg</sub> = 0.67 eV), recorded the highest open-circuit voltage within the IND series at 1.47 eV. The strong correlation between computational predictions and experimental data for both TPA and IND dyes confirms the reliability of the computational methodologies employed. These findings endorse TPA2 and IND2 as promising candidates for advancing the DSSCs efficiency.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-08026-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Dye-sensitized solar cells (DSSCs) are positioned as a promising technology to address the rising global demand for clean energy, providing a sustainable option to meet the expanding requirements for eco-friendly energy outputs. The strategic selection of electron-donating/accepting groups, along with the π-bridge, in the design of light-harvesting dyes for DSSCs systematically enhances their photophysical properties to meet efficiency criteria and optimize DSSC performance. This study examines model dyes derived from triphenylamine (TPA) and indoline (IND), designated as TPA1, TPA2, TPA3, IND1, IND2, and IND3, each containing donor, bridge, and acceptor molecular units. The research aims to assess how different π-spacer configurations affect the optical, electronic, and photovoltaic properties critical for DSSCs. Using DFT and TDDFT methods, the study demonstrates that extending π-conjugation (in a D-π-π-A structure) causes a red shift in the absorption spectra by reducing the HOMO–LUMO gap. TPA2 outperformed the other TPA dyes with the highest short-circuit current density (Jsc) of 1.75 mA cm⁻2, while IND2 led the IND series with a Jsc of 0.77 mA cm⁻2. Additionally, TPA2 showed superior regeneration kinetics, with the fastest regeneration rate (ΔGreg = 0.37 eV) and an open-circuit voltage of 0.88 eV. IND2, though achieving a competitive regeneration rate (ΔGreg = 0.67 eV), recorded the highest open-circuit voltage within the IND series at 1.47 eV. The strong correlation between computational predictions and experimental data for both TPA and IND dyes confirms the reliability of the computational methodologies employed. These findings endorse TPA2 and IND2 as promising candidates for advancing the DSSCs efficiency.

探讨芳香π间隔剂对DSSCs中三苯胺和吲哚染料光物理性质的影响
染料敏化太阳能电池(DSSC)是一项前景广阔的技术,可满足全球对清洁能源日益增长的需求,为满足对生态友好型能源产出不断扩大的要求提供了一种可持续的选择。在设计用于 DSSC 的光收集染料时,战略性地选择电子捐献/接受基团以及 π 桥,可系统地增强其光物理性质,从而满足效率标准并优化 DSSC 性能。本研究考察了由三苯胺(TPA)和吲哚啉(IND)衍生的模型染料,分别命名为 TPA1、TPA2、TPA3、IND1、IND2 和 IND3,每种染料都包含供体、桥和受体分子单元。研究旨在评估不同的π-间隔配置如何影响对 DSSC 至关重要的光学、电子和光伏特性。研究采用 DFT 和 TDDFT 方法证明,扩展 π 共轭(D-π-π-A 结构)会降低 HOMO-LUMO 间隙,从而导致吸收光谱发生红移。TPA2 的表现优于其他 TPA 染料,其短路电流密度(Jsc)最高,为 1.75 mA cm-2,而 IND2 的 Jsc 为 0.77 mA cm-2,在 IND 系列中处于领先地位。此外,TPA2 的再生动力学性能优越,再生速率最快(ΔGreg = 0.37 eV),开路电压为 0.88 eV。IND2 虽然再生速度较快(ΔGreg = 0.67 eV),但在 IND 系列中开路电压最高,为 1.47 eV。TPA 和 IND 染料的计算预测与实验数据之间的紧密相关性证实了所采用的计算方法的可靠性。这些研究结果证明 TPA2 和 IND2 是提高 DSSC 效率的理想候选染料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信