Adeyemi Ojutalayo Adeeyo, Joshua Akinropo Oyetade, Titus Alfred Msagati, Nkosi Colile, Rachel Makungo
{"title":"Performance of a Wild Sesame (Sesamum Spp) Phytochemical Extract for Water Disinfection","authors":"Adeyemi Ojutalayo Adeeyo, Joshua Akinropo Oyetade, Titus Alfred Msagati, Nkosi Colile, Rachel Makungo","doi":"10.1007/s11270-024-07666-5","DOIUrl":null,"url":null,"abstract":"<div><p>The study sampled wild Sesame from open field in South Africa. The samples were pretreated while the extracts were screened for phytochemical compositions and applied for water purification using standard procedures. The physicochemical properties of sampled raw and purified water (pH, total dissolved solids, salinity turbidity and conductivity) were analyzed in situ before and after treatment in the lab, respectively. The plant’s phytochemical extract from the leaves and stem was prepared using selected solvents (methanol, cold water and warm water). The results revealed the presence of phytochemicals including tannins, phenols, flavonoids, steroids, anthraquinone, terpenoids, saponins, and phlobatannins in both the stem and leaf of the wild Sesame plant. The study shows effective percentage reduction of <i>E. coli</i> and total bacteria with extracts of leaf (98.5, 100.0 and 97.2%), (98.8, 100.0 and 95.0%) and stem (94.0, 95.4 and 99.0%), (99.4, 98.6 and 98.4%) using methanol, cold and warm water, respectively, at 5ml of the phytochemical extracts. This study explores the use of wild Sesame phytochemicals for disinfecting river and stream water samples, highlighting the potential for greener and sustainable water treatment. The physicochemical parameters of the treated water were within tolerable limits, especially salinity and the total dissolved solids. Thus, the extract is presented as a potential solution for water purification, aligning with SDG goals 6 (clean water), 9, and 12 (green innovations). It fills the knowledge and product gap in water treatment, causing minimal harm, consistent with the African Union's sustainable development agenda and the African Council on Water's goal for clean water. This innovation meets the criteria for technology readiness levels 2 and 3, making it ready for further development.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-024-07666-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07666-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The study sampled wild Sesame from open field in South Africa. The samples were pretreated while the extracts were screened for phytochemical compositions and applied for water purification using standard procedures. The physicochemical properties of sampled raw and purified water (pH, total dissolved solids, salinity turbidity and conductivity) were analyzed in situ before and after treatment in the lab, respectively. The plant’s phytochemical extract from the leaves and stem was prepared using selected solvents (methanol, cold water and warm water). The results revealed the presence of phytochemicals including tannins, phenols, flavonoids, steroids, anthraquinone, terpenoids, saponins, and phlobatannins in both the stem and leaf of the wild Sesame plant. The study shows effective percentage reduction of E. coli and total bacteria with extracts of leaf (98.5, 100.0 and 97.2%), (98.8, 100.0 and 95.0%) and stem (94.0, 95.4 and 99.0%), (99.4, 98.6 and 98.4%) using methanol, cold and warm water, respectively, at 5ml of the phytochemical extracts. This study explores the use of wild Sesame phytochemicals for disinfecting river and stream water samples, highlighting the potential for greener and sustainable water treatment. The physicochemical parameters of the treated water were within tolerable limits, especially salinity and the total dissolved solids. Thus, the extract is presented as a potential solution for water purification, aligning with SDG goals 6 (clean water), 9, and 12 (green innovations). It fills the knowledge and product gap in water treatment, causing minimal harm, consistent with the African Union's sustainable development agenda and the African Council on Water's goal for clean water. This innovation meets the criteria for technology readiness levels 2 and 3, making it ready for further development.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.