Research on the characteristics of pore water distribution of calcium carbonate waste soil based on NMR tests

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL
Jianxiao Gu, Haibo Lyu, Guoqiang Chen, Jiajia Wu, Yaoxingyu Chen
{"title":"Research on the characteristics of pore water distribution of calcium carbonate waste soil based on NMR tests","authors":"Jianxiao Gu,&nbsp;Haibo Lyu,&nbsp;Guoqiang Chen,&nbsp;Jiajia Wu,&nbsp;Yaoxingyu Chen","doi":"10.1007/s10064-024-04078-x","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding pore water distribution in soil is essential for elucidating water movement and mechanical properties, as it significantly influences soil strength and stability. Accurate assessment of this distribution provides a scientific foundation for civil engineering design, ensuring structural safety and durability. This study examines pore water distribution using plate load tests and Nuclear Magnetic Resonance (NMR). Results indicate that matric suction expels free water first, leaving bound water until a critical suction point is reached. As matric suction increases, the peak value of the T<sub>2</sub> relaxation time curve decreases, shifting leftward, reflecting water drainage from larger to smaller pores. Then, water expulsion occurs in three stages, with Stage III primarily indicating bound water content, quantified at 19.23%, including 3.3% as strongly bound water. An equation is derived to calculate the surface relaxation rate of 0.0176 μm/ms. Thus, the distribution of T<sub>2</sub> relaxation time can be transformed into pore size distribution, summarizing the characteristics of pore water distribution during the drying process. Finally, comparative analysis confirms the effectiveness of NMR in measuring bound water. These findings enhance our understanding of soil water distribution and highlight the need for advanced models that incorporate pore connectivity and water retention dynamics.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04078-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding pore water distribution in soil is essential for elucidating water movement and mechanical properties, as it significantly influences soil strength and stability. Accurate assessment of this distribution provides a scientific foundation for civil engineering design, ensuring structural safety and durability. This study examines pore water distribution using plate load tests and Nuclear Magnetic Resonance (NMR). Results indicate that matric suction expels free water first, leaving bound water until a critical suction point is reached. As matric suction increases, the peak value of the T2 relaxation time curve decreases, shifting leftward, reflecting water drainage from larger to smaller pores. Then, water expulsion occurs in three stages, with Stage III primarily indicating bound water content, quantified at 19.23%, including 3.3% as strongly bound water. An equation is derived to calculate the surface relaxation rate of 0.0176 μm/ms. Thus, the distribution of T2 relaxation time can be transformed into pore size distribution, summarizing the characteristics of pore water distribution during the drying process. Finally, comparative analysis confirms the effectiveness of NMR in measuring bound water. These findings enhance our understanding of soil water distribution and highlight the need for advanced models that incorporate pore connectivity and water retention dynamics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信