Matthew J. Lohr, Grace N. Bechtel, Berkin Dortdivanlioglu, Manuel K. Rausch
{"title":"How to measure fracture toughness of soft materials: a comparison of six different approaches using blood clot as a model material","authors":"Matthew J. Lohr, Grace N. Bechtel, Berkin Dortdivanlioglu, Manuel K. Rausch","doi":"10.1007/s10704-024-00820-4","DOIUrl":null,"url":null,"abstract":"<div><p>Soft materials are an important class of materials. They play critical roles both in nature, in the form of soft tissues, and in industrial applications. Quantifying their mechanical properties is an important part of understanding and predicting their behavior, and thus optimizing their use. However, there are often no agreed upon standards for how to do so. This also holds true for quantifying their fracture toughness; that is, their resistance to crack propagation. The goal of our work is to fill this knowledge gap using blood clot as a model material. In total, we compared three general approaches, some with multiple different implementations. The first approach is based on Griffith’s definition of the critical energy release rate. The second approach makes use of the J-Integral. The last approach uses cohesive zones. We applied these approaches to 12 pure shear experiments with notched samples (some approaches were supplemented with unnotched samples). Finally, we compared these approaches by their intra- and inter-approach variability, the complexity of their implementation, and their computational cost. Overall, we found that the simplest method was also the most consistent and the least costly one: the Griffith-based approach, as proposed by Rivlin and Thomas in 1953.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00820-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft materials are an important class of materials. They play critical roles both in nature, in the form of soft tissues, and in industrial applications. Quantifying their mechanical properties is an important part of understanding and predicting their behavior, and thus optimizing their use. However, there are often no agreed upon standards for how to do so. This also holds true for quantifying their fracture toughness; that is, their resistance to crack propagation. The goal of our work is to fill this knowledge gap using blood clot as a model material. In total, we compared three general approaches, some with multiple different implementations. The first approach is based on Griffith’s definition of the critical energy release rate. The second approach makes use of the J-Integral. The last approach uses cohesive zones. We applied these approaches to 12 pure shear experiments with notched samples (some approaches were supplemented with unnotched samples). Finally, we compared these approaches by their intra- and inter-approach variability, the complexity of their implementation, and their computational cost. Overall, we found that the simplest method was also the most consistent and the least costly one: the Griffith-based approach, as proposed by Rivlin and Thomas in 1953.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.