Vibration localization and reduction in plates via lightweight soft acoustic black hole and vibration absorbers

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Jian Xue  (, ), Hong-Wei Ma  (, ), Li-Qun Chen  (, )
{"title":"Vibration localization and reduction in plates via lightweight soft acoustic black hole and vibration absorbers","authors":"Jian Xue \n (,&nbsp;),&nbsp;Hong-Wei Ma \n (,&nbsp;),&nbsp;Li-Qun Chen \n (,&nbsp;)","doi":"10.1007/s10409-024-24141-x","DOIUrl":null,"url":null,"abstract":"<div><p>A lightweight composite resonator, consisting of a soft material acoustic black hole (SABH) and multiple vibration absorbers, is embedded in a plate to achieve localization and absorption of low-frequency vibration energy. The combination of local and global admissible functions for displacement enhances the accuracy of the Ritz method in predicting vibration localization characteristics within the SABH domain. Utilizing soft materials for the SABH can reduce the mass and frequency of the composite resonator. Due to the lack of orthogonality between global vibration modes and localized modes, the low-frequency localized modes induced by the SABH are used to shape the initial global modes, thereby concentrating the global vibration of the plate in the SABH region. Consequently, the absorbers of the composite resonator only need to be a small fraction of the mass of the local SABH to achieve substantial vibration control of the host plate. This vibration localization strategy can significantly reduce the vibration amplitude of the host plate and enhance the effectiveness of lightweight absorbers in vibration reduction.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24141-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A lightweight composite resonator, consisting of a soft material acoustic black hole (SABH) and multiple vibration absorbers, is embedded in a plate to achieve localization and absorption of low-frequency vibration energy. The combination of local and global admissible functions for displacement enhances the accuracy of the Ritz method in predicting vibration localization characteristics within the SABH domain. Utilizing soft materials for the SABH can reduce the mass and frequency of the composite resonator. Due to the lack of orthogonality between global vibration modes and localized modes, the low-frequency localized modes induced by the SABH are used to shape the initial global modes, thereby concentrating the global vibration of the plate in the SABH region. Consequently, the absorbers of the composite resonator only need to be a small fraction of the mass of the local SABH to achieve substantial vibration control of the host plate. This vibration localization strategy can significantly reduce the vibration amplitude of the host plate and enhance the effectiveness of lightweight absorbers in vibration reduction.

利用轻量化软声黑洞和吸振器对钢板进行振动定位和减振
将一个软材料声黑洞(SABH)和多个吸振器组成的轻质复合谐振器嵌入板中,实现低频振动能量的局部化和吸收。局部和全局允许位移函数的结合提高了里兹方法在SABH域内预测振动局部化特性的精度。在SABH中使用软材料可以降低复合谐振器的质量和频率。由于整体振动模态与局部振动模态之间缺乏正交性,利用SABH诱导的低频局部模态来塑造初始全局模态,从而将板的整体振动集中在SABH区域。因此,复合谐振器的吸收器只需要局部SABH质量的一小部分就可以实现对主板的实质性振动控制。这种振动定位策略可以显著降低主板的振动幅值,提高轻量化吸振器的减振效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信