Electrospun poly(acrylonitrile) and poly(ethylene glycol) composite nanofibers incorporated with Gd2O3 NPs for energy storage applications

IF 2.6 4区 化学 Q3 POLYMER SCIENCE
Mohan Jagan, S. P. Vijayachamundeeswari
{"title":"Electrospun poly(acrylonitrile) and poly(ethylene glycol) composite nanofibers incorporated with Gd2O3 NPs for energy storage applications","authors":"Mohan Jagan,&nbsp;S. P. Vijayachamundeeswari","doi":"10.1007/s10965-024-04243-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a composite polymer electrolyte based on poly (ethylene glycol)/poly(acrylonitrile) (PEG/PAN) has been fabricated using the electrospinning technique, with varying weight ratios of gadolinium oxides (Gd<sub>2</sub>O<sub>3</sub>). Employing polymeric electrolytes having comparatively high mechanical strength, improved safety, and exceptional flexibility as alternatives to traditional electrolytic fluid is an efficient technique for reducing lithium (Li) dendrite development in Li-based batteries. Nevertheless, inadequate ionic conductivity, insufficient thermal resistance, and an extremely tiny electrochemical window continue to limit their uses. We present Gd<sub>2</sub>O<sub>3</sub> nanofibers enabled PAN/PEG-based composite polymer electrolytes (CPEs) with improved ionic conductivity and large electrochemical windows. The investigation found that adding 15 Wt.% Gd<sub>2</sub>O<sub>3</sub> nanofiber to PAN/PEG results in a flexible electrolyte membrane with increased performance, including high ionic conductivity (1.026 × 10<sup>–4</sup> S cm<sup>−1</sup>) at RT, Li<sup>+</sup> transfer number is 0.83, a broad electrochemical window (5.5 V), and good thermal shrinkage 150 °C, electrolyte uptake upto (~ 246%), porosity upto (~ 97%), and activation energy (0.23). This study demonstrates that adding Gd<sub>2</sub>O<sub>3</sub>nanofibers could enhance the electrochemical efficiency of PAN/PEG based This study demonstrates adding Gd<sub>2</sub>O<sub>3</sub>nanofibers could enhance the electrochemical efficiency of PAN/PEG-based composite polymer electrolytes for energy storage applications.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04243-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a composite polymer electrolyte based on poly (ethylene glycol)/poly(acrylonitrile) (PEG/PAN) has been fabricated using the electrospinning technique, with varying weight ratios of gadolinium oxides (Gd2O3). Employing polymeric electrolytes having comparatively high mechanical strength, improved safety, and exceptional flexibility as alternatives to traditional electrolytic fluid is an efficient technique for reducing lithium (Li) dendrite development in Li-based batteries. Nevertheless, inadequate ionic conductivity, insufficient thermal resistance, and an extremely tiny electrochemical window continue to limit their uses. We present Gd2O3 nanofibers enabled PAN/PEG-based composite polymer electrolytes (CPEs) with improved ionic conductivity and large electrochemical windows. The investigation found that adding 15 Wt.% Gd2O3 nanofiber to PAN/PEG results in a flexible electrolyte membrane with increased performance, including high ionic conductivity (1.026 × 10–4 S cm−1) at RT, Li+ transfer number is 0.83, a broad electrochemical window (5.5 V), and good thermal shrinkage 150 °C, electrolyte uptake upto (~ 246%), porosity upto (~ 97%), and activation energy (0.23). This study demonstrates that adding Gd2O3nanofibers could enhance the electrochemical efficiency of PAN/PEG based This study demonstrates adding Gd2O3nanofibers could enhance the electrochemical efficiency of PAN/PEG-based composite polymer electrolytes for energy storage applications.

含有Gd2O3纳米粒子的电纺丝聚丙烯腈和聚乙二醇复合纳米纤维用于储能应用
在这项工作中,利用静电纺丝技术制备了一种基于聚乙二醇/聚丙烯腈(PEG/PAN)的复合聚合物电解质,该电解质具有不同重量比的氧化钆(Gd2O3)。采用具有较高机械强度、更高安全性和特殊灵活性的聚合物电解质作为传统电解液的替代品,是减少锂基电池中锂枝晶形成的有效技术。然而,离子电导率不足,热阻不足,以及极小的电化学窗口继续限制它们的使用。我们提出了Gd2O3纳米纤维使PAN/ peg基复合聚合物电解质(cpe)具有改善的离子电导率和大的电化学窗口。研究发现,在PAN/PEG中添加15 Wt.% Gd2O3纳米纤维,可获得性能优异的柔性电解质膜,包括在RT下离子电导率高(1.026 × 10-4 S cm−1),Li+转移数为0.83,电化学窗口宽(5.5 V), 150°C的良好热收缩率,电解质吸收率高达(~ 246%),孔隙率高达(~ 97%)和活化能(0.23)。本研究表明,加入gd2o3纳米纤维可以提高PAN/PEG基复合聚合物电解质的电化学效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信