{"title":"Efficient cascade conversion of glucose to levulinic acid using a dual-functional UiO-66 catalyst†","authors":"Sininat Boonmark, Panyapat Ponchai, Kanyaporn Adpakpang, Taya Saothayanun, Yollada Inchongkol, Natchaya Phongsuk and Sareeya Bureekaew","doi":"10.1039/D4SE01352B","DOIUrl":null,"url":null,"abstract":"<p >The catalytic properties of UiO-66 were enhanced through a post-synthetic defect engineering method. This involved facile treatment of the material with aqueous HCl to induce defects that generated free carboxylic acid (–COOH) groups. Consequently, the modified UiO-66 framework incorporated both Brønsted acidic –COOH groups and Lewis acidic sites, which originate from inherent linker-missing defects. These dual-functional acidic sites, combined with the high structural stability of UiO-66, enable it to act as an efficient heterogeneous catalyst for one-pot, multistep reactions. Specifically, the catalyst facilitates the conversion of glucose to levulinic acid (LEV) in the presence of sodium chloride (NaCl) as a promoter under hydrothermal conditions. Under optimized conditions (190 °C for 6 h), the catalytic system achieves a remarkable conversion of glucose (>99%), with an impressive 83% yield of LEV. The defect-engineered UiO-66 catalyst shows exceptional potential as a candidate for sugar conversion to valuable bio-based chemicals.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 2","pages":" 596-605"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01352b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic properties of UiO-66 were enhanced through a post-synthetic defect engineering method. This involved facile treatment of the material with aqueous HCl to induce defects that generated free carboxylic acid (–COOH) groups. Consequently, the modified UiO-66 framework incorporated both Brønsted acidic –COOH groups and Lewis acidic sites, which originate from inherent linker-missing defects. These dual-functional acidic sites, combined with the high structural stability of UiO-66, enable it to act as an efficient heterogeneous catalyst for one-pot, multistep reactions. Specifically, the catalyst facilitates the conversion of glucose to levulinic acid (LEV) in the presence of sodium chloride (NaCl) as a promoter under hydrothermal conditions. Under optimized conditions (190 °C for 6 h), the catalytic system achieves a remarkable conversion of glucose (>99%), with an impressive 83% yield of LEV. The defect-engineered UiO-66 catalyst shows exceptional potential as a candidate for sugar conversion to valuable bio-based chemicals.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.