Benzobisthiazole covalent organic framework photocatalysis for selective oxidation of benzyl amines†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Shengquan Zhu, Hongxiang Zhao, Yuexin Wang, Zheng Li, Siyu Zhang, Bing Zeng, Xue Zhou, Xiang-Kui Gu and Xianjun Lang
{"title":"Benzobisthiazole covalent organic framework photocatalysis for selective oxidation of benzyl amines†","authors":"Shengquan Zhu, Hongxiang Zhao, Yuexin Wang, Zheng Li, Siyu Zhang, Bing Zeng, Xue Zhou, Xiang-Kui Gu and Xianjun Lang","doi":"10.1039/D4SE01634C","DOIUrl":null,"url":null,"abstract":"<p >Covalent organic frameworks (COFs) enable highly effective photocatalysis due to their crystallinity, tunable pores and channels, and expansive light absorption. The performance of COFs in photocatalysis is underpinned by the intrinsic tendency of charge separation and transfer, thereby depending on the molecular building blocks. Benzobisthiazole (BBT), with an electron-withdrawing effect, shows superior potential in various optoelectronic materials. Therefore, with tetrabutylammonium hydroxide as a catalyst, a fully conjugated COF, BBT-sp<small><sup>2</sup></small>c-COF, is synthesized from 2,2′-(benzo[1,2-<em>d</em>:4,5-<em>d</em>′]bis(thiazole)-2,6-diyl)diacetonitrile and 1,3,6,8-tetrakis(4-formylphenyl)pyrene. As such, a series of characterizations demonstrate the structural and optical properties of BBT-sp<small><sup>2</sup></small>c-COF. The fully conjugated COF, BBT-sp<small><sup>2</sup></small>c-COF, possesses enhanced charge separation, electron transfer, and recycling stability. As expected, BBT-sp<small><sup>2</sup></small>c-COF photocatalysis achieves effective selective oxidation of benzyl amines with oxygen under blue light irradiation. Superoxide is identified as the crucial reactive oxygen species during the formation of imines. The full conjugation of organic building blocks into COFs can achieve highly effective photocatalysis.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 2","pages":" 527-537"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d4se01634c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic frameworks (COFs) enable highly effective photocatalysis due to their crystallinity, tunable pores and channels, and expansive light absorption. The performance of COFs in photocatalysis is underpinned by the intrinsic tendency of charge separation and transfer, thereby depending on the molecular building blocks. Benzobisthiazole (BBT), with an electron-withdrawing effect, shows superior potential in various optoelectronic materials. Therefore, with tetrabutylammonium hydroxide as a catalyst, a fully conjugated COF, BBT-sp2c-COF, is synthesized from 2,2′-(benzo[1,2-d:4,5-d′]bis(thiazole)-2,6-diyl)diacetonitrile and 1,3,6,8-tetrakis(4-formylphenyl)pyrene. As such, a series of characterizations demonstrate the structural and optical properties of BBT-sp2c-COF. The fully conjugated COF, BBT-sp2c-COF, possesses enhanced charge separation, electron transfer, and recycling stability. As expected, BBT-sp2c-COF photocatalysis achieves effective selective oxidation of benzyl amines with oxygen under blue light irradiation. Superoxide is identified as the crucial reactive oxygen species during the formation of imines. The full conjugation of organic building blocks into COFs can achieve highly effective photocatalysis.

Abstract Image

苯并双噻唑共价有机框架光催化选择性氧化苯并胺†
共价有机框架(COFs)由于其结晶性、可调节的孔和通道以及广泛的光吸收而具有高效的光催化作用。COFs在光催化中的性能是由电荷分离和转移的内在趋势所支撑的,因此取决于分子构建块。苯并双噻唑(BBT)具有吸电子效应,在各种光电材料中表现出优异的潜力。因此,以四丁基氢氧化铵为催化剂,以2,2 ' -(苯并[1,2-d:4,5-d ']二(噻唑)-2,6-二基)二乙腈和1,3,6,8-四(4-甲基苯基)芘为原料合成了全共轭COF BBT-sp2c-COF。因此,一系列表征证明了BBT-sp2c-COF的结构和光学性质。完全共轭COF, BBT-sp2c-COF,具有更强的电荷分离、电子转移和循环稳定性。正如预期的那样,BBT-sp2c-COF光催化在蓝光照射下实现了苯胺与氧的有效选择性氧化。超氧化物被认为是亚胺形成过程中至关重要的活性氧。有机构建块与COFs的完全共轭可以实现高效的光催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信