Yaping Chen, Yuyue Yang, Ziheng Liang, Zhanpeng Tao, Qiao Ni and Wenping Sun
{"title":"Iridium-based electrocatalysts for the hydrogen oxidation reaction toward alkaline exchange membrane fuel cells","authors":"Yaping Chen, Yuyue Yang, Ziheng Liang, Zhanpeng Tao, Qiao Ni and Wenping Sun","doi":"10.1039/D4TA07777F","DOIUrl":null,"url":null,"abstract":"<p >Alkaline exchange membrane fuel cells (AEMFCs) hold great promise as highly efficient hydrogen energy conversion devices, largely due to the broad range of catalyst options available under alkaline conditions. However, the hydrogen oxidation reaction (HOR) at the anode exhibits significantly slower kinetics compared to proton exchange membrane fuel cells, which poses a challenge for achieving high performance. Iridium (Ir)-based catalysts present a compelling alternative to platinum (Pt)-based counterparts for the HOR in alkaline media due to their appropriate adsorption energy for both hydrogen and hydroxyl, alongside their superior CO tolerance. This review comprehensively summarizes recent advancements in the design strategies of advanced electrocatalysts for the alkaline HOR, including alloying effects, interface engineering, lattice strain, and phase engineering, focusing on their critical roles in modulating the electronic structure and coordination environments. Finally, the review discusses current challenges and offers perspectives on the future directions for improving the performance of Ir-based electrocatalysts. This review will guide future research in the development of high-performance Ir-based HOR electrocatalysts for AEMFCs.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 3","pages":" 1659-1668"},"PeriodicalIF":9.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta07777f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alkaline exchange membrane fuel cells (AEMFCs) hold great promise as highly efficient hydrogen energy conversion devices, largely due to the broad range of catalyst options available under alkaline conditions. However, the hydrogen oxidation reaction (HOR) at the anode exhibits significantly slower kinetics compared to proton exchange membrane fuel cells, which poses a challenge for achieving high performance. Iridium (Ir)-based catalysts present a compelling alternative to platinum (Pt)-based counterparts for the HOR in alkaline media due to their appropriate adsorption energy for both hydrogen and hydroxyl, alongside their superior CO tolerance. This review comprehensively summarizes recent advancements in the design strategies of advanced electrocatalysts for the alkaline HOR, including alloying effects, interface engineering, lattice strain, and phase engineering, focusing on their critical roles in modulating the electronic structure and coordination environments. Finally, the review discusses current challenges and offers perspectives on the future directions for improving the performance of Ir-based electrocatalysts. This review will guide future research in the development of high-performance Ir-based HOR electrocatalysts for AEMFCs.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.