A hydrophilic-Zn2+ conductive lanthanum phosphate interlayer toward ultra-long-life Zn anodes and zinc ion capacitors†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuequn Li, Yanjie Wang, Zhe Fang, Shaopei Jia, Xukai Wu, Zhiheng Wang, Kunyang Geng, Kongyao Chen, Yunchao Mu, Lin Zhang and Liwei Mi
{"title":"A hydrophilic-Zn2+ conductive lanthanum phosphate interlayer toward ultra-long-life Zn anodes and zinc ion capacitors†","authors":"Yuequn Li, Yanjie Wang, Zhe Fang, Shaopei Jia, Xukai Wu, Zhiheng Wang, Kunyang Geng, Kongyao Chen, Yunchao Mu, Lin Zhang and Liwei Mi","doi":"10.1039/D4QM00868E","DOIUrl":null,"url":null,"abstract":"<p >The detrimental interfacial side reactions and irregular Zn dendrites may reduce the cycling life of Zn anodes and Zn-based energy storage devices. Regulating the interfacial microenvironment to eliminate harmful side reactions and achieve uniform Zn deposition is vital to develop high-performance Zn anodes. Here, a “hydrophilic-Zn<small><sup>2+</sup></small> conductive” lanthanum phosphate (LaPO<small><sub>4</sub></small>) interlayer is applied to realize an ultra-long-life Zn anode (LAP-Zn) and Zn<small><sup>2+</sup></small> capacitors. The hydrophilic LaPO<small><sub>4</sub></small> can act as a microscopic “H<small><sub>2</sub></small>O-reservoir” by preferentially adsorbing H<small><sub>2</sub></small>O molecules (the adsorption energy of LaPO<small><sub>4</sub></small>–H<small><sub>2</sub></small>O is −1.17 eV, larger than that of Zn–H<small><sub>2</sub></small>O). Consequently, a microscopic H<small><sub>2</sub></small>O-poor environment on the Zn anode is formed, thus eliminating harmful side reactions including H<small><sub>2</sub></small> evolution and Zn corrosion. Simultaneously, Zn<small><sup>2+</sup></small> de-solvation is promoted, facilitating accelerated interfacial migration and uniform flux of Zn<small><sup>2+</sup></small>. The Zn<small><sup>2+</sup></small> migration number of LAP-Zn is 0.84 which is higher than that of pure Zn, demonstrating excellent Zn<small><sup>2+</sup></small> conductivity. The LAP-Zn//LAP-Zn symmetrical cell operates efficiently for over 700 h at 5 mA cm<small><sup>−2</sup></small> and 2 mA cm<small><sup>−2</sup></small>. The LAP-Zn//activated carbon capacitor exhibits an ultra-long life of 30 000 cycles at 1 A g<small><sup>−1</sup></small>, with continuous operation for over 3600 h while maintaining a capacity retention ratio of 95%. Therefore, this “hydrophilic-Zn<small><sup>2+</sup></small> conductive” LaPO<small><sub>4</sub></small> interlayer enables uniform Zn deposition and a highly reversible Zn plating/stripping process. This modification strategy using a “hydrophilic-Zn<small><sup>2+</sup></small> conductive” rare earth-based interfacial layer is simple, long-term effective, and microcosmic, thus boosting the commercial application of Zn-based energy storage devices.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 299-307"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00868e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The detrimental interfacial side reactions and irregular Zn dendrites may reduce the cycling life of Zn anodes and Zn-based energy storage devices. Regulating the interfacial microenvironment to eliminate harmful side reactions and achieve uniform Zn deposition is vital to develop high-performance Zn anodes. Here, a “hydrophilic-Zn2+ conductive” lanthanum phosphate (LaPO4) interlayer is applied to realize an ultra-long-life Zn anode (LAP-Zn) and Zn2+ capacitors. The hydrophilic LaPO4 can act as a microscopic “H2O-reservoir” by preferentially adsorbing H2O molecules (the adsorption energy of LaPO4–H2O is −1.17 eV, larger than that of Zn–H2O). Consequently, a microscopic H2O-poor environment on the Zn anode is formed, thus eliminating harmful side reactions including H2 evolution and Zn corrosion. Simultaneously, Zn2+ de-solvation is promoted, facilitating accelerated interfacial migration and uniform flux of Zn2+. The Zn2+ migration number of LAP-Zn is 0.84 which is higher than that of pure Zn, demonstrating excellent Zn2+ conductivity. The LAP-Zn//LAP-Zn symmetrical cell operates efficiently for over 700 h at 5 mA cm−2 and 2 mA cm−2. The LAP-Zn//activated carbon capacitor exhibits an ultra-long life of 30 000 cycles at 1 A g−1, with continuous operation for over 3600 h while maintaining a capacity retention ratio of 95%. Therefore, this “hydrophilic-Zn2+ conductive” LaPO4 interlayer enables uniform Zn deposition and a highly reversible Zn plating/stripping process. This modification strategy using a “hydrophilic-Zn2+ conductive” rare earth-based interfacial layer is simple, long-term effective, and microcosmic, thus boosting the commercial application of Zn-based energy storage devices.

Abstract Image

一种用于超长寿命锌阳极和锌离子电容器的亲水- zn2 +导电磷酸镧中间层
有害的界面副反应和不规则的锌枝晶会降低锌阳极和锌基储能装置的循环寿命。调节界面微环境,消除有害副反应,实现均匀的锌沉积是开发高性能锌阳极的关键。在这里,应用“亲水-Zn2+导电”磷酸镧(LaPO4)中间层来实现超长寿命锌阳极(LAP-Zn)和Zn2+电容器。亲水性的LaPO4优先吸附H2O分子,可作为微观“储水层”(LaPO4 - H2O的吸附能为- 1.17 eV,大于Zn-H2O)。因此,在锌阳极上形成了微观的贫氢环境,从而消除了析氢和锌腐蚀等有害副反应。同时,促进了Zn2+的脱溶剂化,加速了Zn2+的界面迁移,使Zn2+的通量均匀。LAP-Zn的Zn2+迁移数为0.84,高于纯Zn,表现出优异的Zn2+导电性。LAP-Zn//LAP-Zn对称电池在5 mA cm - 2和2 mA cm - 2下有效工作超过700小时。LAP-Zn//活性炭电容器在1 A g−1下具有3万次的超长寿命,连续工作超过3600小时,同时保持95%的容量保持率。因此,这种“亲水- zn2 +导电”的LaPO4中间层可以实现均匀的Zn沉积和高度可逆的Zn镀/剥离过程。这种利用“亲水- zn2 +导电”稀土基界面层的改性策略简单、长效、微观,从而促进了锌基储能装置的商业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信