Ziyong Li, Jinzhao Song, Qilian Wang, Yongliang Feng, Qingxin Song, Sixin Wang, Qianqian Nie, Fan He, Haining Zhang and Hui Guo
{"title":"Near-infrared II photochromic behavior triggered by green light in an in situ protonated dithienylethene functionalized by quinoxalinone moieties†","authors":"Ziyong Li, Jinzhao Song, Qilian Wang, Yongliang Feng, Qingxin Song, Sixin Wang, Qianqian Nie, Fan He, Haining Zhang and Hui Guo","doi":"10.1039/D4QM00719K","DOIUrl":null,"url":null,"abstract":"<p >Exploiting the near-infrared (NIR) photochromic dithienylethenes (DTEs) triggered by visible light is urgently needed for various biological scenarios. However, all the NIR photochromic DTEs reported so far are located in the first NIR window (NIR-I, 700–900 nm), which usually shows shallower penetration in biological tissues due to autofluorescence and photon scattering compared to NIR light in the second window (NIR-II, 1000–1700 nm). Herein, we present a novel quinoxalinone-functionalized DTE derivative (<strong>QDTE</strong>) with acceptor (A)–DTE (D)–acceptor (A) structural features, in which electron-withdrawing quinoxalinone groups ensure visible light-driven NIR I photochromism. Besides, the facile protonation of the quinoxalinone moieties favors the formation of the more electron-deficient A′–D–A′-type DTE (<strong>QDTE-2H</strong>, where A′ is a stronger electron-withdrawing unit) for a unique NIR II photochromism by reducing the HOMO–LUMO energy gap of a closed isomer after protonation. As expected, the resulting <strong>QDTE</strong> displays a blue light-controlled NIR I photochromic performance in various solvents. Furthermore, an unprecedented green light-triggered NIR II photochromism for the <em>in situ</em> protonated <strong>QDTE-2H</strong> is successfully implemented in CHCl<small><sub>3</sub></small> and toluene in the presence of trifluoroacetic acid (TFA), representing the first case of NIR II photochromic DTE. By virtue of these properties, <strong>QDTE</strong> has been successfully applied in dual information encryption, demonstrating its versatility in functional materials.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 2","pages":" 234-242"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d4qm00719k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exploiting the near-infrared (NIR) photochromic dithienylethenes (DTEs) triggered by visible light is urgently needed for various biological scenarios. However, all the NIR photochromic DTEs reported so far are located in the first NIR window (NIR-I, 700–900 nm), which usually shows shallower penetration in biological tissues due to autofluorescence and photon scattering compared to NIR light in the second window (NIR-II, 1000–1700 nm). Herein, we present a novel quinoxalinone-functionalized DTE derivative (QDTE) with acceptor (A)–DTE (D)–acceptor (A) structural features, in which electron-withdrawing quinoxalinone groups ensure visible light-driven NIR I photochromism. Besides, the facile protonation of the quinoxalinone moieties favors the formation of the more electron-deficient A′–D–A′-type DTE (QDTE-2H, where A′ is a stronger electron-withdrawing unit) for a unique NIR II photochromism by reducing the HOMO–LUMO energy gap of a closed isomer after protonation. As expected, the resulting QDTE displays a blue light-controlled NIR I photochromic performance in various solvents. Furthermore, an unprecedented green light-triggered NIR II photochromism for the in situ protonated QDTE-2H is successfully implemented in CHCl3 and toluene in the presence of trifluoroacetic acid (TFA), representing the first case of NIR II photochromic DTE. By virtue of these properties, QDTE has been successfully applied in dual information encryption, demonstrating its versatility in functional materials.
期刊介绍:
Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome.
This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.