N and O dual-doped porous carbon transformed from graphitic carbon nitride as a peroxymonosulfate activator for tetracycline hydrochloride degradation†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kang Xiong, Zhoutong Liu, Lihan Ren, De Li, Kangning Dong, Letian Yang and Xiuxia Zhang
{"title":"N and O dual-doped porous carbon transformed from graphitic carbon nitride as a peroxymonosulfate activator for tetracycline hydrochloride degradation†","authors":"Kang Xiong, Zhoutong Liu, Lihan Ren, De Li, Kangning Dong, Letian Yang and Xiuxia Zhang","doi":"10.1039/D4NJ04367G","DOIUrl":null,"url":null,"abstract":"<p >Graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>) is a promising non-metallic material. However, its low specific surface area and chemical inertness lead to low catalytic efficiency, even in the case of non-metallic heteroatom doping. Herein, we develop a simple strategy using citric acid to convert g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> into a N and O dual-doped porous carbon material (ONPC). Compared with pristine g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>, ONPC exhibited significantly enhanced catalytic activity in peroxymonosulfate (PMS) for tetracycline hydrochloride (TC) degradation without light irradiation. In the presence of 0.3 g L<small><sup>−1</sup></small> ONPC and 2.4 mM PMS at pH 5.7, 90.75% of TC could be removed within 60 min. Singlet oxygen (<small><sup>1</sup></small>O<small><sub>2</sub></small>) and superoxide radicals (O<small><sub>2</sub></small>˙<small><sup>−</sup></small>) are the main active species, as verified by quenching experiments and electron paramagnetic resonance (EPR) analysis. Characterization results and DFT calculations confirmed the outstanding contribution of graphite N, pyridine N and carbonyl (C<img>O) to the catalytic performance of ONPC. Three possible pathways for TC degradation were proposed by high-resolution liquid chromatography–mass spectrometry (LC–MS) analysis, and the toxicity of most intermediates was lower than that of TC. Overall, this work will provide a simple approach to the design of efficient carbon catalysts with great potential in catalytic PMS for TC degradation.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 3","pages":" 855-864"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04367g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon nitride (g-C3N4) is a promising non-metallic material. However, its low specific surface area and chemical inertness lead to low catalytic efficiency, even in the case of non-metallic heteroatom doping. Herein, we develop a simple strategy using citric acid to convert g-C3N4 into a N and O dual-doped porous carbon material (ONPC). Compared with pristine g-C3N4, ONPC exhibited significantly enhanced catalytic activity in peroxymonosulfate (PMS) for tetracycline hydrochloride (TC) degradation without light irradiation. In the presence of 0.3 g L−1 ONPC and 2.4 mM PMS at pH 5.7, 90.75% of TC could be removed within 60 min. Singlet oxygen (1O2) and superoxide radicals (O2˙) are the main active species, as verified by quenching experiments and electron paramagnetic resonance (EPR) analysis. Characterization results and DFT calculations confirmed the outstanding contribution of graphite N, pyridine N and carbonyl (CO) to the catalytic performance of ONPC. Three possible pathways for TC degradation were proposed by high-resolution liquid chromatography–mass spectrometry (LC–MS) analysis, and the toxicity of most intermediates was lower than that of TC. Overall, this work will provide a simple approach to the design of efficient carbon catalysts with great potential in catalytic PMS for TC degradation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信