Fundamental understanding of fluorophenol-derived dual organocatalysts for ring-opening polymerization of lactide†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Guo Fengzhen, Jiawen Dai, Shaoju Cao, Yaling Yin, Zhenjiang Li, Jie Sun, Jin Huang and Kai Guo
{"title":"Fundamental understanding of fluorophenol-derived dual organocatalysts for ring-opening polymerization of lactide†","authors":"Guo Fengzhen, Jiawen Dai, Shaoju Cao, Yaling Yin, Zhenjiang Li, Jie Sun, Jin Huang and Kai Guo","doi":"10.1039/D4NJ04115A","DOIUrl":null,"url":null,"abstract":"<p >Designing benign catalytic systems is essential to accelerate polymerization research. This requires a thorough understanding of structural interactions between catalysts and monomers. We here report a combined approach involving bench experiments, density functional theory (DFT), and multivariate linear regression (MLR) to elucidate the structure–activity relationships of catalysts. Fluorophenol derived dual organocatalysts were designed and applied for ring-opening polymerization (ROP) of <small>L</small>-lactide (LLA), where the catalytic system exhibits high catalytic activity in bulk at 140 °C. Mechanistic studies revealed a synergistic catalytic process, where the dual organocatalysts activate the initiator and monomer through hydrogen bonding interaction. By applying a multivariate linear regression (MLR) model, the study identifies key electronic and thermodynamic descriptors that significantly influence the observed rate constants (<em>k</em><small><sub>obs</sub></small>) in the catalytic process.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 3","pages":" 761-768"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04115a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing benign catalytic systems is essential to accelerate polymerization research. This requires a thorough understanding of structural interactions between catalysts and monomers. We here report a combined approach involving bench experiments, density functional theory (DFT), and multivariate linear regression (MLR) to elucidate the structure–activity relationships of catalysts. Fluorophenol derived dual organocatalysts were designed and applied for ring-opening polymerization (ROP) of L-lactide (LLA), where the catalytic system exhibits high catalytic activity in bulk at 140 °C. Mechanistic studies revealed a synergistic catalytic process, where the dual organocatalysts activate the initiator and monomer through hydrogen bonding interaction. By applying a multivariate linear regression (MLR) model, the study identifies key electronic and thermodynamic descriptors that significantly influence the observed rate constants (kobs) in the catalytic process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信