Deep Learning-Based Multiswitch Open-Circuit Fault Diagnosis for Active Front-End Rectifiers Using Multisensor Signals

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Sourabh Ghosh;Ehtesham Hassan;Asheesh Kumar Singh;Sri Niwas Singh
{"title":"Deep Learning-Based Multiswitch Open-Circuit Fault Diagnosis for Active Front-End Rectifiers Using Multisensor Signals","authors":"Sourabh Ghosh;Ehtesham Hassan;Asheesh Kumar Singh;Sri Niwas Singh","doi":"10.1109/LSENS.2024.3524033","DOIUrl":null,"url":null,"abstract":"Open-circuit switch faults (OCSFs) in power semiconductor switches are caused by wire bonding failures, gate driver malfunction, surge voltage/current, electromagnetic interference, and cosmic radiation. Under OCSFs, the signal characteristics are not excessively high, but prolonged OCSFs risk cascading system failures. This letter presents a comprehensive analysis of various deep neural network (DNN)-based architectures, such as long short-term memory (LSTM) and convolutional neural network (CNN), to diagnose multiclass OCSFs in three-phase active front-end rectifiers (TP-AFRs). A novel multisensor time-series sequence (MTSS) dataset is acquired at 500 Hz, comprising 624 observations from 19 sensor signals for single, double, and triple-switch OCSFs. The intertwining issue in the MTSS dataset is visualized using t-SNE, and the initial experiments with support vector machine (SVM) rendered the highest test accuracy of 93% against k-nearest neighbor, artificial neural network, and decision tree classifiers. Further, our investigations revealed that an architecture with two-layer CNN, one-layer LSTM, and one fully connected layer achieves a competitive testing accuracy of 95.03%, showing an improvement of 2.03% from the SVM classifier, and 7.03% from the one-layer LSTM network. These findings demonstrate the potential of this approach for enhancing reliability of TP-AFRs with the direct application of downsampled raw electrical signals.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 2","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818596/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Open-circuit switch faults (OCSFs) in power semiconductor switches are caused by wire bonding failures, gate driver malfunction, surge voltage/current, electromagnetic interference, and cosmic radiation. Under OCSFs, the signal characteristics are not excessively high, but prolonged OCSFs risk cascading system failures. This letter presents a comprehensive analysis of various deep neural network (DNN)-based architectures, such as long short-term memory (LSTM) and convolutional neural network (CNN), to diagnose multiclass OCSFs in three-phase active front-end rectifiers (TP-AFRs). A novel multisensor time-series sequence (MTSS) dataset is acquired at 500 Hz, comprising 624 observations from 19 sensor signals for single, double, and triple-switch OCSFs. The intertwining issue in the MTSS dataset is visualized using t-SNE, and the initial experiments with support vector machine (SVM) rendered the highest test accuracy of 93% against k-nearest neighbor, artificial neural network, and decision tree classifiers. Further, our investigations revealed that an architecture with two-layer CNN, one-layer LSTM, and one fully connected layer achieves a competitive testing accuracy of 95.03%, showing an improvement of 2.03% from the SVM classifier, and 7.03% from the one-layer LSTM network. These findings demonstrate the potential of this approach for enhancing reliability of TP-AFRs with the direct application of downsampled raw electrical signals.
基于深度学习的前端有源整流器多开关开路故障多传感器诊断
功率半导体开关中的开路开关故障(ocsf)是由线键合故障、栅极驱动器故障、浪涌电压/电流、电磁干扰和宇宙辐射引起的。在ocsf下,信号特性不会过高,但如果ocsf持续时间过长,则可能导致系统发生级联故障。这封信全面分析了各种基于深度神经网络(DNN)的架构,如长短期记忆(LSTM)和卷积神经网络(CNN),以诊断三相有源前端整流器(tp - afr)中的多类ocsf。在500 Hz频率下获得了一个新的多传感器时间序列序列(MTSS)数据集,包括来自19个传感器信号的624个观测值,分别用于单开关、双开关和三开关ocsf。使用t-SNE对MTSS数据集中的交织问题进行了可视化处理,支持向量机(SVM)的初始实验在k近邻、人工神经网络和决策树分类器上的测试准确率最高,达到93%。此外,我们的研究表明,两层CNN,一层LSTM和一个完全连接层的架构实现了95.03%的竞争测试准确率,其中SVM分类器提高了2.03%,单层LSTM网络提高了7.03%。这些发现证明了这种方法通过直接应用下采样的原始电信号来提高tp - afr的可靠性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信