Multiobjective Dynamic Flexible Job Shop Scheduling With Biased Objectives via Multitask Genetic Programming

Fangfang Zhang;Gaofeng Shi;Yi Mei;Mengjie Zhang
{"title":"Multiobjective Dynamic Flexible Job Shop Scheduling With Biased Objectives via Multitask Genetic Programming","authors":"Fangfang Zhang;Gaofeng Shi;Yi Mei;Mengjie Zhang","doi":"10.1109/TAI.2024.3456086","DOIUrl":null,"url":null,"abstract":"Dynamic flexible job shop scheduling is an important combinatorial optimization problem that has rich real-world applications such as product processing in manufacturing. Genetic programming has been successfully used to learn scheduling heuristics for dynamic flexible job shop scheduling. Intuitively, users prefer small and effective scheduling heuristics that can not only generate promising schedules but also are computationally efficient and easy to be understood. However, a scheduling heuristic with better effectiveness tends to have a larger size, and the effectiveness of rules and rule size are potentially conflicting objectives. With the traditional dominance relation-based multiobjective algorithms, there is a search bias toward rule size, since rule size is much easier to optimized than effectiveness, and larger rules are easily abandoned, resulting in the loss of effectiveness. To address this issue, this article develops a novel multiobjective genetic programming algorithm that takes size and effectiveness of scheduling heuristics for optimization via multitask learning mechanism. Specifically, we construct two tasks for the multiobjective optimization with biased objectives using different search mechanisms for each task. The focus of the proposed algorithm is to improve the effectiveness of learned small rules by knowledge sharing between constructed tasks which is implemented with the crossover operator. The results show that our proposed algorithm performs significantly better, i.e., with smaller and more effective scheduling heuristics, than the state-of-the-art algorithms in the examined scenarios. By analyzing the population diversity, we find that the proposed algorithm has a good balance between exploration and exploitation during the evolutionary process.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"169-183"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669769/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic flexible job shop scheduling is an important combinatorial optimization problem that has rich real-world applications such as product processing in manufacturing. Genetic programming has been successfully used to learn scheduling heuristics for dynamic flexible job shop scheduling. Intuitively, users prefer small and effective scheduling heuristics that can not only generate promising schedules but also are computationally efficient and easy to be understood. However, a scheduling heuristic with better effectiveness tends to have a larger size, and the effectiveness of rules and rule size are potentially conflicting objectives. With the traditional dominance relation-based multiobjective algorithms, there is a search bias toward rule size, since rule size is much easier to optimized than effectiveness, and larger rules are easily abandoned, resulting in the loss of effectiveness. To address this issue, this article develops a novel multiobjective genetic programming algorithm that takes size and effectiveness of scheduling heuristics for optimization via multitask learning mechanism. Specifically, we construct two tasks for the multiobjective optimization with biased objectives using different search mechanisms for each task. The focus of the proposed algorithm is to improve the effectiveness of learned small rules by knowledge sharing between constructed tasks which is implemented with the crossover operator. The results show that our proposed algorithm performs significantly better, i.e., with smaller and more effective scheduling heuristics, than the state-of-the-art algorithms in the examined scenarios. By analyzing the population diversity, we find that the proposed algorithm has a good balance between exploration and exploitation during the evolutionary process.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信