Generalization of Optimal Geodesic Curvature Constrained Dubins’ Path on Sphere With Free Terminal Orientation

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Deepak Prakash Kumar;Swaroop Darbha;Satyanarayana Gupta Manyam;David Casbeer
{"title":"Generalization of Optimal Geodesic Curvature Constrained Dubins’ Path on Sphere With Free Terminal Orientation","authors":"Deepak Prakash Kumar;Swaroop Darbha;Satyanarayana Gupta Manyam;David Casbeer","doi":"10.1109/LCSYS.2024.3520026","DOIUrl":null,"url":null,"abstract":"In this letter, motion planning for a Dubins vehicle on a unit sphere to attain a desired final location is considered. The radius of the Dubins path on the sphere is lower bounded by r, where r represents the radius of the tightest left or right turn the vehicle can take on the sphere. Noting that <inline-formula> <tex-math>$r \\in $ </tex-math></inline-formula> (0, 1) and can affect the trajectory taken by the vehicle, it is desired to determine the candidate optimal paths for r ranging from nearly zero to close to one to attain a desired final location. In a previous study, this problem was addressed, wherein it was shown that the optimal path is of type <inline-formula> <tex-math>$CG, CC$ </tex-math></inline-formula>, or a degenerate path of the CG and CC paths, which includes C, G paths, for <inline-formula> <tex-math>$r \\leq {}\\frac {1}{2}$ </tex-math></inline-formula>. Here, <inline-formula> <tex-math>$C~\\in $ </tex-math></inline-formula> {<inline-formula> <tex-math>$L, R$ </tex-math></inline-formula>} denotes an arc of a tight left or right turn of minimum turning radius r, and G denotes an arc of a great circle. In this letter, the candidate paths for the same problem are generalized to model vehicles with a larger turning radius. In particular, it is shown that the candidate optimal paths are of type <inline-formula> <tex-math>$CG, CC$ </tex-math></inline-formula>, or a degenerate path of the CG and CC paths for <inline-formula> <tex-math>$r \\leq {}\\frac {\\sqrt {3}}{2}$ </tex-math></inline-formula>. Noting that at most two LG paths and two RG paths can exist for a given final location, this letter further reduces the candidate optimal paths by showing that only one LG and one RG path can be optimal, yielding a total of seven candidate paths for <inline-formula> <tex-math>$r \\leq {}\\frac {\\sqrt {3}}{2}$ </tex-math></inline-formula>. Additional conditions for the optimality of CC paths are also derived in this letter.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2991-2996"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10806797/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, motion planning for a Dubins vehicle on a unit sphere to attain a desired final location is considered. The radius of the Dubins path on the sphere is lower bounded by r, where r represents the radius of the tightest left or right turn the vehicle can take on the sphere. Noting that $r \in $ (0, 1) and can affect the trajectory taken by the vehicle, it is desired to determine the candidate optimal paths for r ranging from nearly zero to close to one to attain a desired final location. In a previous study, this problem was addressed, wherein it was shown that the optimal path is of type $CG, CC$ , or a degenerate path of the CG and CC paths, which includes C, G paths, for $r \leq {}\frac {1}{2}$ . Here, $C~\in $ { $L, R$ } denotes an arc of a tight left or right turn of minimum turning radius r, and G denotes an arc of a great circle. In this letter, the candidate paths for the same problem are generalized to model vehicles with a larger turning radius. In particular, it is shown that the candidate optimal paths are of type $CG, CC$ , or a degenerate path of the CG and CC paths for $r \leq {}\frac {\sqrt {3}}{2}$ . Noting that at most two LG paths and two RG paths can exist for a given final location, this letter further reduces the candidate optimal paths by showing that only one LG and one RG path can be optimal, yielding a total of seven candidate paths for $r \leq {}\frac {\sqrt {3}}{2}$ . Additional conditions for the optimality of CC paths are also derived in this letter.
最优测地线曲率约束下自由端向球上Dubins路径的推广
在这封信中,运动规划的杜宾车辆在一个单位球体上,以达到理想的最终位置被考虑。球体上的杜宾路径半径下界为r,其中r表示车辆在球体上最紧的左转弯或右转弯半径。注意到$r \in $(0,1)和可以影响车辆所采取的轨迹,需要确定候选最优路径,r的范围从接近零到接近1,以获得理想的最终位置。在之前的研究中,解决了这个问题,其中表明,对于$r \leq {}\frac {1}{2}$,最优路径类型为$CG, CC$,或者是CG和CC路径的退化路径,其中包括C, G路径。这里,$C~\in ${$L, R$表示最小转弯半径r的紧左或右转弯的弧,G表示大圆的弧。本文将同一问题的候选路径推广到具有更大转弯半径的车辆模型。特别地,研究表明候选最优路径为}$CG, CC$类型,或$r \leq {}\frac {\sqrt {3}}{2}$的CG和CC路径的退化路径。注意到对于给定的最终位置,最多可以存在两条LG路径和两条RG路径,这封信进一步减少了候选最优路径,表明只有一条LG路径和一条RG路径是最优的,为$r \leq {}\frac {\sqrt {3}}{2}$产生了总共七条候选路径。本文还推导了CC路径最优性的附加条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信