Model Predictive Control for Systems With Partially Unknown Dynamics Under Signal Temporal Logic Specifications

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Zhao Feng Dai;Yash Vardhan Pant;Stephen L. Smith
{"title":"Model Predictive Control for Systems With Partially Unknown Dynamics Under Signal Temporal Logic Specifications","authors":"Zhao Feng Dai;Yash Vardhan Pant;Stephen L. Smith","doi":"10.1109/LCSYS.2024.3519034","DOIUrl":null,"url":null,"abstract":"In this letter, we design a model predictive controller (MPC) for systems to satisfy Signal Temporal Logic (STL) specifications when the system dynamics are partially unknown, and only a nominal model and past runtime data are available. Our approach uses Gaussian process regression to learn a stochastic, data-driven model of the unknown dynamics, and manages uncertainty in the STL specification resulting from the stochastic model using Probabilistic Signal Temporal Logic (PrSTL). The learned model and PrSTL specification are then used to formulate a chance-constrained MPC. For systems with high control rates, we discuss a modification for improving the solution speed of the control optimization. In simulation case studies, our controller increases the frequency of satisfying the STL specification compared to controllers that use only the nominal dynamics model.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2931-2936"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804141/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we design a model predictive controller (MPC) for systems to satisfy Signal Temporal Logic (STL) specifications when the system dynamics are partially unknown, and only a nominal model and past runtime data are available. Our approach uses Gaussian process regression to learn a stochastic, data-driven model of the unknown dynamics, and manages uncertainty in the STL specification resulting from the stochastic model using Probabilistic Signal Temporal Logic (PrSTL). The learned model and PrSTL specification are then used to formulate a chance-constrained MPC. For systems with high control rates, we discuss a modification for improving the solution speed of the control optimization. In simulation case studies, our controller increases the frequency of satisfying the STL specification compared to controllers that use only the nominal dynamics model.
信号时序逻辑规范下部分未知动态系统的模型预测控制
在这封信中,我们为系统设计了一个模型预测控制器(MPC),以满足信号时间逻辑(STL)规范,当系统动力学部分未知时,只有标称模型和过去的运行时数据可用。我们的方法使用高斯过程回归来学习未知动态的随机数据驱动模型,并使用概率信号时间逻辑(PrSTL)管理随机模型导致的STL规范中的不确定性。然后使用学习到的模型和PrSTL规范来制定机会约束的MPC。对于控制速率较高的系统,讨论了一种改进方法,以提高控制优化的求解速度。在仿真案例研究中,与仅使用标称动态模型的控制器相比,我们的控制器增加了满足STL规范的频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信