Finite-Dimensional Observer-Based Boundary Control of 1-D Linear Parabolic-Elliptic Systems

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Pengfei Wang;Emilia Fridman
{"title":"Finite-Dimensional Observer-Based Boundary Control of 1-D Linear Parabolic-Elliptic Systems","authors":"Pengfei Wang;Emilia Fridman","doi":"10.1109/LCSYS.2024.3518396","DOIUrl":null,"url":null,"abstract":"This letter investigates the finite-dimensional observer-based boundary control for 1D linear parabolic-elliptic systems via the modal decomposition method. To address the potential multiple eigenvalues arising from the elliptic equation, we implement bilateral actuations (one Dirichlet and one Neumann) on the boundary of the parabolic equation with two point measurements. When the eigenvalues are simple, one boundary actuation and one point measurement are sufficient, but the second input and output may reduce the observer dimension. We present efficient LMI conditions for finding observer dimension, as well as controller and observer gains, ensuring the <inline-formula> <tex-math>${\\mathrm { H}}^{1}$ </tex-math></inline-formula> exponential stability with any desirable decay rate. We show that the LMIs are always feasible for large enough values of the observer dimension. Numerical examples demonstrate the efficiency of the method.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2943-2948"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10802999/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter investigates the finite-dimensional observer-based boundary control for 1D linear parabolic-elliptic systems via the modal decomposition method. To address the potential multiple eigenvalues arising from the elliptic equation, we implement bilateral actuations (one Dirichlet and one Neumann) on the boundary of the parabolic equation with two point measurements. When the eigenvalues are simple, one boundary actuation and one point measurement are sufficient, but the second input and output may reduce the observer dimension. We present efficient LMI conditions for finding observer dimension, as well as controller and observer gains, ensuring the ${\mathrm { H}}^{1}$ exponential stability with any desirable decay rate. We show that the LMIs are always feasible for large enough values of the observer dimension. Numerical examples demonstrate the efficiency of the method.
一维线性抛物-椭圆系统的有限维观测器边界控制
本文利用模态分解方法研究了一维线性抛物-椭圆系统的有限维观测器边界控制。为了解决椭圆方程产生的潜在多重特征值,我们在具有两点测量的抛物方程边界上实现了双边驱动(一个狄利克雷和一个诺伊曼)。当特征值比较简单时,一次边界驱动和一次点测量就足够了,但第二次输入和输出可能会降低观测器维数。我们提出了寻找观测器维数的有效LMI条件,以及控制器和观测器增益,确保了${\ mathm {H}}^{1}$指数在任何理想衰减率下的稳定性。我们证明lmi对于足够大的观测器维数总是可行的。数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信