Model-Order Reduction of Multistage Cascaded Models for Digital Predistortion

IF 6.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Raúl Criado;Wantao Li;William Thompson;Gabriel Montoro;Kevin Chuang;Pere L. Gilabert
{"title":"Model-Order Reduction of Multistage Cascaded Models for Digital Predistortion","authors":"Raúl Criado;Wantao Li;William Thompson;Gabriel Montoro;Kevin Chuang;Pere L. Gilabert","doi":"10.1109/JMW.2024.3483458","DOIUrl":null,"url":null,"abstract":"This paper explores the benefits of utilizing multistage cascaded (CC) behavioral models for digital predistortion (DPD) linearization of wideband high-efficiency power amplifiers (PAs). To reduce the computational complexity of these multistage CC behavioral models, a model-order reduction technique based on a greedy algorithm is proposed. The advantages of employing CC DPD models with gradient descent parameter identification, as opposed to single-stage DPD models with least squares parameter identification, are extensively demonstrated and analyzed. The trade-off among linearity, power efficiency and computational complexity is evaluated considering the linearization of a high-efficiency pseudo-Doherty load-modulated balanced amplifier (PD-LMBA). Using the proposed pruning strategy for CC DPD models, we demonstrate a significant reduction in the number of parameters needed to linearize the PD-LMBA. The PA operates at an RF frequency of 2 GHz and delivers a mean output power of 40 dBm with an approximately 50% power efficiency when driven by 5G new radio signals with up to 200 MHz bandwidth and an 8 dB peak-to-average power ratio.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 1","pages":"137-149"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746384","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10746384/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the benefits of utilizing multistage cascaded (CC) behavioral models for digital predistortion (DPD) linearization of wideband high-efficiency power amplifiers (PAs). To reduce the computational complexity of these multistage CC behavioral models, a model-order reduction technique based on a greedy algorithm is proposed. The advantages of employing CC DPD models with gradient descent parameter identification, as opposed to single-stage DPD models with least squares parameter identification, are extensively demonstrated and analyzed. The trade-off among linearity, power efficiency and computational complexity is evaluated considering the linearization of a high-efficiency pseudo-Doherty load-modulated balanced amplifier (PD-LMBA). Using the proposed pruning strategy for CC DPD models, we demonstrate a significant reduction in the number of parameters needed to linearize the PD-LMBA. The PA operates at an RF frequency of 2 GHz and delivers a mean output power of 40 dBm with an approximately 50% power efficiency when driven by 5G new radio signals with up to 200 MHz bandwidth and an 8 dB peak-to-average power ratio.
减少数字预失真多级级联模型的模型阶数
本文探讨了利用多级级联(CC)行为模型对宽带高效功率放大器(pa)进行数字预失真(DPD)线性化的好处。为了降低多阶段CC行为模型的计算复杂度,提出了一种基于贪心算法的模型阶约简技术。本文广泛论证和分析了采用梯度下降参数识别的CC DPD模型相对于采用最小二乘参数识别的单级DPD模型的优势。考虑高效率伪多尔蒂负载调制平衡放大器(PD-LMBA)的线性化,对线性度、功率效率和计算复杂度之间的权衡进行了评估。使用提出的CC DPD模型修剪策略,我们证明了线性化PD-LMBA所需的参数数量显着减少。PA工作在2ghz的射频频率下,在带宽高达200mhz、峰值平均功率比为8db的5G新无线电信号驱动下,平均输出功率为40dbm,功率效率约为50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信