Raúl Criado;Wantao Li;William Thompson;Gabriel Montoro;Kevin Chuang;Pere L. Gilabert
{"title":"Model-Order Reduction of Multistage Cascaded Models for Digital Predistortion","authors":"Raúl Criado;Wantao Li;William Thompson;Gabriel Montoro;Kevin Chuang;Pere L. Gilabert","doi":"10.1109/JMW.2024.3483458","DOIUrl":null,"url":null,"abstract":"This paper explores the benefits of utilizing multistage cascaded (CC) behavioral models for digital predistortion (DPD) linearization of wideband high-efficiency power amplifiers (PAs). To reduce the computational complexity of these multistage CC behavioral models, a model-order reduction technique based on a greedy algorithm is proposed. The advantages of employing CC DPD models with gradient descent parameter identification, as opposed to single-stage DPD models with least squares parameter identification, are extensively demonstrated and analyzed. The trade-off among linearity, power efficiency and computational complexity is evaluated considering the linearization of a high-efficiency pseudo-Doherty load-modulated balanced amplifier (PD-LMBA). Using the proposed pruning strategy for CC DPD models, we demonstrate a significant reduction in the number of parameters needed to linearize the PD-LMBA. The PA operates at an RF frequency of 2 GHz and delivers a mean output power of 40 dBm with an approximately 50% power efficiency when driven by 5G new radio signals with up to 200 MHz bandwidth and an 8 dB peak-to-average power ratio.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"5 1","pages":"137-149"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746384","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10746384/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the benefits of utilizing multistage cascaded (CC) behavioral models for digital predistortion (DPD) linearization of wideband high-efficiency power amplifiers (PAs). To reduce the computational complexity of these multistage CC behavioral models, a model-order reduction technique based on a greedy algorithm is proposed. The advantages of employing CC DPD models with gradient descent parameter identification, as opposed to single-stage DPD models with least squares parameter identification, are extensively demonstrated and analyzed. The trade-off among linearity, power efficiency and computational complexity is evaluated considering the linearization of a high-efficiency pseudo-Doherty load-modulated balanced amplifier (PD-LMBA). Using the proposed pruning strategy for CC DPD models, we demonstrate a significant reduction in the number of parameters needed to linearize the PD-LMBA. The PA operates at an RF frequency of 2 GHz and delivers a mean output power of 40 dBm with an approximately 50% power efficiency when driven by 5G new radio signals with up to 200 MHz bandwidth and an 8 dB peak-to-average power ratio.