Adaptive Resource Allocation and Mode Switching for D2D Networks With Imperfect CSI in AGV-Based Factory Automation

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Safiu A. Gbadamosi;Gerhard P. Hancke;Adnan M. Abu-Mahfouz
{"title":"Adaptive Resource Allocation and Mode Switching for D2D Networks With Imperfect CSI in AGV-Based Factory Automation","authors":"Safiu A. Gbadamosi;Gerhard P. Hancke;Adnan M. Abu-Mahfouz","doi":"10.1109/OJVT.2024.3519135","DOIUrl":null,"url":null,"abstract":"In industrial factory automation and control system, reliable communication for automated guided vehicles (AGVs) in dynamic, interference laden factory settings are essential particularly for real-time operations. Device-to-device (D2D) technology can enhance industrial network performance by offloading traffic and improving resource utilization. However, deploying D2D-enabled networks presents challenges such as interference control and imperfect channel state information (ICSI). In this paper, we investigate an adaptive resource allocation and mode switching strategy (ARAMS) in D2D-enabled industrial small cell (SC) networks with ICSI to maximize the system throughput and address reuse interference for AGVs. The ARAMS scheme integrates mode switching (MS), channel-quality factor (CQF), and power control (PC) within a bi-phasic resource-sharing (RS) algorithm to lower the computational complexity. In the initial phase, the operational mode for each D2D user (DU) per cell is adaptively selected based on the channel gain ratio (CGR). Subsequently, it computes the CQF for each cell with a reuse DU to identify an optimal reuse partner. The final phase employs the Lagrangian dual decomposition method to decide the DU's and industrial cellular users (CUs) optimum distributed power to maximize the system throughput under the interference constraints. The numerical results show that as channel estimation error variance (CEEV) increases, the ARAMS scheme consistently outperforms other approaches in maximizing system throughput, except for the AIMS scheme.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"288-300"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804206","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804206/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In industrial factory automation and control system, reliable communication for automated guided vehicles (AGVs) in dynamic, interference laden factory settings are essential particularly for real-time operations. Device-to-device (D2D) technology can enhance industrial network performance by offloading traffic and improving resource utilization. However, deploying D2D-enabled networks presents challenges such as interference control and imperfect channel state information (ICSI). In this paper, we investigate an adaptive resource allocation and mode switching strategy (ARAMS) in D2D-enabled industrial small cell (SC) networks with ICSI to maximize the system throughput and address reuse interference for AGVs. The ARAMS scheme integrates mode switching (MS), channel-quality factor (CQF), and power control (PC) within a bi-phasic resource-sharing (RS) algorithm to lower the computational complexity. In the initial phase, the operational mode for each D2D user (DU) per cell is adaptively selected based on the channel gain ratio (CGR). Subsequently, it computes the CQF for each cell with a reuse DU to identify an optimal reuse partner. The final phase employs the Lagrangian dual decomposition method to decide the DU's and industrial cellular users (CUs) optimum distributed power to maximize the system throughput under the interference constraints. The numerical results show that as channel estimation error variance (CEEV) increases, the ARAMS scheme consistently outperforms other approaches in maximizing system throughput, except for the AIMS scheme.
基于agv的工厂自动化中不完全CSI的D2D网络自适应资源分配与模式切换
在工业工厂自动化和控制系统中,在动态、充满干扰的工厂环境中,自动导引车(agv)的可靠通信对于实时操作至关重要。设备到设备(Device-to-device, D2D)技术可以通过分流流量和提高资源利用率来提高工业网络性能。然而,部署支持d2d的网络面临着干扰控制和不完善的信道状态信息(ICSI)等挑战。在本文中,我们研究了具有ICSI的支持d2d的工业小蜂窝(SC)网络中的自适应资源分配和模式切换策略(ARAMS),以最大化系统吞吐量并解决agv的重用干扰。ARAMS方案将模式切换(MS)、信道质量因子(CQF)和功率控制(PC)集成在一个双相资源共享(RS)算法中,以降低计算复杂度。在初始阶段,根据信道增益比(CGR)自适应地选择每个D2D用户(DU)的工作模式。随后,计算具有重用DU的每个单元的CQF,以确定最佳重用伙伴。最后一阶段采用拉格朗日对偶分解方法确定DU和工业蜂窝用户(cu)在干扰约束下的最优分配功率,使系统吞吐量最大化。数值结果表明,随着信道估计误差方差(CEEV)的增大,除AIMS方案外,ARAMS方案在最大系统吞吐量方面始终优于其他方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信