Boosting Few-Shot Semantic Segmentation With Prior-Driven Edge Feature Enhancement Network

Jingkai Ma;Shuang Bai;Wenchao Pan
{"title":"Boosting Few-Shot Semantic Segmentation With Prior-Driven Edge Feature Enhancement Network","authors":"Jingkai Ma;Shuang Bai;Wenchao Pan","doi":"10.1109/TAI.2024.3474650","DOIUrl":null,"url":null,"abstract":"Few-shot semantic segmentation (FSS) focuses on segmenting objects of novel classes with only a small number of annotated samples and has achieved great development. However, compared with general semantic segmentation, inaccurate boundary predictions remain a serious problem in FSS. This is because, in scenarios with few samples, the extracted query features by the model struggle to contain sufficient detailed information to focus on the boundary of the target. To address this issue, we propose a prior-driven edge feature enhancement network (PDEFE) that utilizes the prior information of the object edges to enhance the query feature, thereby promoting the accurate segmentation of the target. Specifically, we first design an edge feature enhancement module (EFEM) that can utilize object edges to enhance the feature of the query object's boundaries. Furthermore, we also propose an edge prior mask generator (EPMG) to generate prior masks for edges based on the gradient information of the image, which can guide the model to pay more attention to the boundaries of the target in the query image. Extensive experiments on PASCAL-<inline-formula><tex-math>$5^{i}$</tex-math></inline-formula> and COCO-<inline-formula><tex-math>$20^{i}$</tex-math></inline-formula> demonstrate that PDEFE significantly improves upon two baseline detectors (up to 2.7<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>4.2% mIoU in average), achieving state-of-the-art performance.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"6 1","pages":"211-220"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10706585/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot semantic segmentation (FSS) focuses on segmenting objects of novel classes with only a small number of annotated samples and has achieved great development. However, compared with general semantic segmentation, inaccurate boundary predictions remain a serious problem in FSS. This is because, in scenarios with few samples, the extracted query features by the model struggle to contain sufficient detailed information to focus on the boundary of the target. To address this issue, we propose a prior-driven edge feature enhancement network (PDEFE) that utilizes the prior information of the object edges to enhance the query feature, thereby promoting the accurate segmentation of the target. Specifically, we first design an edge feature enhancement module (EFEM) that can utilize object edges to enhance the feature of the query object's boundaries. Furthermore, we also propose an edge prior mask generator (EPMG) to generate prior masks for edges based on the gradient information of the image, which can guide the model to pay more attention to the boundaries of the target in the query image. Extensive experiments on PASCAL-$5^{i}$ and COCO-$20^{i}$ demonstrate that PDEFE significantly improves upon two baseline detectors (up to 2.7$\sim$4.2% mIoU in average), achieving state-of-the-art performance.
基于先验驱动边缘特征增强网络的少镜头语义分割
少射语义分割(Few-shot semantic segmentation, FSS)专注于用少量的标注样本对新类别的对象进行分割,并取得了很大的发展。然而,与一般的语义分割相比,边界预测不准确仍然是FSS中存在的一个严重问题。这是因为,在样本较少的场景中,模型提取的查询特征难以包含足够的详细信息,以关注目标的边界。为了解决这一问题,我们提出了一种先验驱动的边缘特征增强网络(PDEFE),该网络利用物体边缘的先验信息来增强查询特征,从而促进目标的准确分割。具体来说,我们首先设计了一个边缘特征增强模块(EFEM),该模块可以利用对象的边缘来增强查询对象的边界特征。此外,我们还提出了一种边缘先验掩码生成器(EPMG),基于图像的梯度信息生成边缘的先验掩码,可以引导模型更加关注查询图像中目标的边界。在PASCAL-$5^{i}$和COCO-$20^{i}$上进行的大量实验表明,PDEFE在两个基线检测器上显着改善(平均高达2.7$\sim$4.2% mIoU),实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信