Interstitial Doping in Ultrafine Nanocrystals for Efficient and Durable Water Splitting

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Minming Jiang, Jiang Xu, Yujie Chen, Luqi Wang, Qi Zhou, Paul Munroe, Linlin Li, Zong-Han Xie, Shengjie Peng
{"title":"Interstitial Doping in Ultrafine Nanocrystals for Efficient and Durable Water Splitting","authors":"Minming Jiang, Jiang Xu, Yujie Chen, Luqi Wang, Qi Zhou, Paul Munroe, Linlin Li, Zong-Han Xie, Shengjie Peng","doi":"10.1002/anie.202424195","DOIUrl":null,"url":null,"abstract":"Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.9 nm, thus maximizing atomic utilization. The unique crystalline-amorphous heterojunction interface enhances electrocatalytic stability. Furthermore, the electronic regulation of metal sites by interstitial C and N atoms not only optimizes the adsorption-dissociation process in hydrogen evolution reaction (HER), but also accelerates the surface reconstruction of hydroxyl oxides to enhance the oxygen evolution reaction (OER) activity. As a result, the as-prepared coating achieved overpotentials of only 62 and 237 mV for the HER and OER at 10 mA cm−2 in alkaline electrolytes, and exhibited excellent OWS performance and long-term stability at high current densities. This work presents a new perspective for synthesizing TMISS nanocrystals and promotes their application in bifunctional electrocatalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"91 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424195","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal-based catalysts with high efficiency and stability for overall water splitting (OWS) offer significant potential for reducing green hydrogen production costs. Utilizing sputtering deposition technology, we propose a deposition-diffusion strategy to fabricate heterojunction coatings composed of ultrafine FeCoNi-C-N transition metal interstitial solid solution (TMISS) nanocrystals and amorphous nitrided carbon (NC) on the pre-deposited NC micro column arrays. The diffusion of C and N atoms results in the formation of uniformly distributed TMISS nanocrystals, with an average diameter of ~1.9 nm, thus maximizing atomic utilization. The unique crystalline-amorphous heterojunction interface enhances electrocatalytic stability. Furthermore, the electronic regulation of metal sites by interstitial C and N atoms not only optimizes the adsorption-dissociation process in hydrogen evolution reaction (HER), but also accelerates the surface reconstruction of hydroxyl oxides to enhance the oxygen evolution reaction (OER) activity. As a result, the as-prepared coating achieved overpotentials of only 62 and 237 mV for the HER and OER at 10 mA cm−2 in alkaline electrolytes, and exhibited excellent OWS performance and long-term stability at high current densities. This work presents a new perspective for synthesizing TMISS nanocrystals and promotes their application in bifunctional electrocatalysts.
超细纳米晶体中的间隙掺杂用于高效持久的水分解
过渡金属基催化剂具有高效稳定的整体水分解(OWS)催化剂,为降低绿色制氢成本提供了巨大的潜力。利用溅射沉积技术,提出了一种沉积-扩散策略,在预沉积的NC微柱阵列上制备由超细fecni - c - n过渡金属间隙固溶体(TMISS)纳米晶和非晶氮化碳(NC)组成的异质结涂层。C和N原子的扩散形成了均匀分布的TMISS纳米晶体,平均直径约1.9 nm,从而最大限度地利用了原子。独特的晶体-非晶异质结界面提高了电催化的稳定性。此外,间隙C和N原子对金属位的电子调控不仅优化了析氢反应(HER)中的吸附-解离过程,而且加速了羟基氧化物的表面重构,提高了析氢反应(OER)活性。结果表明,制备的涂层在碱性电解质中,在10 mA cm−2时,HER和OER的过电位仅为62和237 mV,并且在高电流密度下表现出优异的OWS性能和长期稳定性。本研究为TMISS纳米晶的合成提供了新的思路,并促进了其在双功能电催化剂中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信