{"title":"An ultra-high output self-managed power system based on a multilayer magnetic suspension hybrid nanogenerator for harvesting water wave energy","authors":"Ying Lou, Mengfan Li, Aifang Yu, Zhong Lin Wang, Junyi Zhai","doi":"10.1039/d4ee04205k","DOIUrl":null,"url":null,"abstract":"Triboelectric–electromagnetic hybrid nanogenerators (TE-HNGs) are promising for efficient energy harvesting, particularly from high-energy-density water waves. However, existing TE-HNGs often suffer from mechanical combinations and lack comprehensive energy optimization strategies, resulting in a suboptimal overall effect where 1 + 1 ≤ 2. Herein, a highly coupled energy self-managed power system (ESPS) is proposed based on our meticulously designed multilayer magnetic suspension hybrid nanogenerator (MS-HNG) with triboelectric and electromagnetic units. Due to voltage phase coherence between the generators, the magnetic suspension electromagnetic generator (MS-EMG) serves as the gate drive source for metal oxide semiconductor field-effect transistors, enabling the instantaneous release of energy from the magnetic suspension triboelectric nanogenerator (MS-TENG) and thereby maximizing energy output within each cycle. The ESPS achieves a peak power of 261.3 mW, a significant improvement over 75.5 mW from the MS-HNG alone, illustrating a synergistic effect where 1 + 1 > 2. Additionally, the ESPS achieves a current of 45 mA (a 7500% increase) and a power density of 631 W m<small><sup>−3</sup></small> (a 346% increase). In water wave environments, this system can power 32 bulbs of 3 W each and perform water quality monitoring. This work represents a new breakthrough in the structural and circuit coupling of TE-HNGs, marking a milestone towards commercialization.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"61 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04205k","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Triboelectric–electromagnetic hybrid nanogenerators (TE-HNGs) are promising for efficient energy harvesting, particularly from high-energy-density water waves. However, existing TE-HNGs often suffer from mechanical combinations and lack comprehensive energy optimization strategies, resulting in a suboptimal overall effect where 1 + 1 ≤ 2. Herein, a highly coupled energy self-managed power system (ESPS) is proposed based on our meticulously designed multilayer magnetic suspension hybrid nanogenerator (MS-HNG) with triboelectric and electromagnetic units. Due to voltage phase coherence between the generators, the magnetic suspension electromagnetic generator (MS-EMG) serves as the gate drive source for metal oxide semiconductor field-effect transistors, enabling the instantaneous release of energy from the magnetic suspension triboelectric nanogenerator (MS-TENG) and thereby maximizing energy output within each cycle. The ESPS achieves a peak power of 261.3 mW, a significant improvement over 75.5 mW from the MS-HNG alone, illustrating a synergistic effect where 1 + 1 > 2. Additionally, the ESPS achieves a current of 45 mA (a 7500% increase) and a power density of 631 W m−3 (a 346% increase). In water wave environments, this system can power 32 bulbs of 3 W each and perform water quality monitoring. This work represents a new breakthrough in the structural and circuit coupling of TE-HNGs, marking a milestone towards commercialization.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).