Tasnim Ahmed, Xuanheng Tan, Barry Y. Li, Elijah Cook, Jillian Williams, Sophia M. Tiano, Belle Coffey, Stephanie M. Tenney, Dugan Hayes, Justin R. Caram
{"title":"Heteroconfinement in Single CdTe Nanoplatelets","authors":"Tasnim Ahmed, Xuanheng Tan, Barry Y. Li, Elijah Cook, Jillian Williams, Sophia M. Tiano, Belle Coffey, Stephanie M. Tenney, Dugan Hayes, Justin R. Caram","doi":"10.1021/acsnano.4c17596","DOIUrl":null,"url":null,"abstract":"Dimension-engineered synthesis of atomically thin II–VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs. Combining ensemble and single-particle spectroscopic and microscopic tools, our work suggests that beyond 2 ML CdTe NPLs, higher ML structures initially appear as heteroconfined materials with colocalized multilayer structures. In particular, we observe strongly colocalized 3 and 4 ML emissions, accompanied by a broad trap emission. Accompanying transient absorption, single-particle optical, and atomic force microscopy analyses suggest islands of different MLs on the same NPL. To explain the nonstandard nucleation and growth of these heteroconfined structures, we simulated the growth conditions of NPLs and quantified how the monomer binding energy modifies the kinetics and permits single NPLs with multi-ML structures. Our findings suggest that the lower bond energy associated with CdTe relative to CdSe limits higher ML syntheses and explains the observed differences between CdTe and CdSe growth.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"91 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17596","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dimension-engineered synthesis of atomically thin II–VI nanoplatelets (NPLs) remains an open challenge. While CdSe NPLs have been made with confinement ranging from 2 to 11 monolayers (ML), CdTe NPLs have been significantly more challenging to synthesize and separate. Here we provide detailed mechanistic insight into the layer-by-layer growth kinetics of the CdTe NPLs. Combining ensemble and single-particle spectroscopic and microscopic tools, our work suggests that beyond 2 ML CdTe NPLs, higher ML structures initially appear as heteroconfined materials with colocalized multilayer structures. In particular, we observe strongly colocalized 3 and 4 ML emissions, accompanied by a broad trap emission. Accompanying transient absorption, single-particle optical, and atomic force microscopy analyses suggest islands of different MLs on the same NPL. To explain the nonstandard nucleation and growth of these heteroconfined structures, we simulated the growth conditions of NPLs and quantified how the monomer binding energy modifies the kinetics and permits single NPLs with multi-ML structures. Our findings suggest that the lower bond energy associated with CdTe relative to CdSe limits higher ML syntheses and explains the observed differences between CdTe and CdSe growth.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.