Lattice Strain-Modulated Trifunctional CoMoO4 Polymorph-Based Electrodes for Asymmetric Supercapacitors and Self-Powered Water Splitting

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-13 DOI:10.1002/smll.202409418
Muhammad Mushtaq, Zhixiao Zhu, Hao Yang, Zeba Khanam, Yu-wen Hu, Selvam Mathi, Zhongmin Wang, M.-Sadeeq Balogun, Yongchao Huang
{"title":"Lattice Strain-Modulated Trifunctional CoMoO4 Polymorph-Based Electrodes for Asymmetric Supercapacitors and Self-Powered Water Splitting","authors":"Muhammad Mushtaq,&nbsp;Zhixiao Zhu,&nbsp;Hao Yang,&nbsp;Zeba Khanam,&nbsp;Yu-wen Hu,&nbsp;Selvam Mathi,&nbsp;Zhongmin Wang,&nbsp;M.-Sadeeq Balogun,&nbsp;Yongchao Huang","doi":"10.1002/smll.202409418","DOIUrl":null,"url":null,"abstract":"<p>Developing efficient, multifunctional electrodes for energy storage and conversion devices is crucial. Herein, lattice strains are reported in the β-phase polymorph of CoMoO<sub>4</sub> within CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> heterostructure via phosphorus doping (P-CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub>) and used as a high-performance trifunctional electrode for supercapacitors (SCs), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER) in alkaline electrolytes. A tensile strain of +2.42% on the β-phase of CoMoO<sub>4</sub> in P-CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> results in superior electrochemical performance compared to CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub>. The optimized P-CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> achieves a high energy density of 118 Wh kg<sup>−1</sup> in an asymmetric supercapacitor and low overpotentials of 189 mV for the HER and 365 mV for the OER at a current density of 500 mA cm<sup>−2</sup>. This results in a low overall water splitting voltage of 1.71 V at the same current density making it an effective bifunctional electrode in a 1 <span>m</span> KOH freshwater electrolyte. Theoretical analysis shows that the excellent performance of P-CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> can be attributed to interfacial interactions between CoMoO<sub>4</sub> and Co<sub>3</sub>O<sub>4</sub>, and the β-phase of CoMoO<sub>4</sub>, which lead to strong OH<sup>−</sup> adsorption and low energy barriers for reaction intermediates. Practical application is demonstrated by using P-CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub>-based ASCs to self-generate hydrogen (H<sub>2</sub>) in a P-CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub>||P-CoMoO<sub>4</sub>@Co<sub>3</sub>O<sub>4</sub> alkaline seawater electrolyzer, showcasing its potential for future energy technologies.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 8","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409418","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient, multifunctional electrodes for energy storage and conversion devices is crucial. Herein, lattice strains are reported in the β-phase polymorph of CoMoO4 within CoMoO4@Co3O4 heterostructure via phosphorus doping (P-CoMoO4@Co3O4) and used as a high-performance trifunctional electrode for supercapacitors (SCs), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER) in alkaline electrolytes. A tensile strain of +2.42% on the β-phase of CoMoO4 in P-CoMoO4@Co3O4 results in superior electrochemical performance compared to CoMoO4@Co3O4. The optimized P-CoMoO4@Co3O4 achieves a high energy density of 118 Wh kg−1 in an asymmetric supercapacitor and low overpotentials of 189 mV for the HER and 365 mV for the OER at a current density of 500 mA cm−2. This results in a low overall water splitting voltage of 1.71 V at the same current density making it an effective bifunctional electrode in a 1 m KOH freshwater electrolyte. Theoretical analysis shows that the excellent performance of P-CoMoO4@Co3O4 can be attributed to interfacial interactions between CoMoO4 and Co3O4, and the β-phase of CoMoO4, which lead to strong OH adsorption and low energy barriers for reaction intermediates. Practical application is demonstrated by using P-CoMoO4@Co3O4-based ASCs to self-generate hydrogen (H2) in a P-CoMoO4@Co3O4||P-CoMoO4@Co3O4 alkaline seawater electrolyzer, showcasing its potential for future energy technologies.

Abstract Image

Abstract Image

非对称超级电容器的晶格应变调制三功能CoMoO4多晶电极和自供电水分裂
为能量存储和转换装置开发高效、多功能电极是至关重要的。本文报道了通过磷掺杂(P-CoMoO4@Co3O4)在CoMoO4的CoMoO4@Co3O4异质结构中形成β相多晶的晶格应变,并将其作为碱性电解质中超级电容器(SCs)、析氢反应(HER)和析氧反应(OER)的高性能三功能电极。当CoMoO4在P-CoMoO4@Co3O4中β相的拉伸应变为+2.42%时,其电化学性能优于CoMoO4@Co3O4。优化后的P-CoMoO4@Co3O4在不对称超级电容器中实现了118 Wh kg−1的高能量密度,在电流密度为500 mA cm−2时,HER和OER的过电位分别为189 mV和365 mV。这导致在相同电流密度下的低总水分裂电压为1.71 V,使其在1 m KOH淡水电解质中成为有效的双功能电极。理论分析表明,P-CoMoO4@Co3O4的优异性能可归因于CoMoO4与Co3O4之间的界面相互作用,以及CoMoO4的β相,使得反应中间体具有较强的OH -吸附和较低的能垒。通过在P-CoMoO4@Co3O4||P-CoMoO4@Co3O4碱性海水电解槽中使用P-CoMoO4@Co3O4-based ASCs自生成氢气(H2),展示了其在未来能源技术中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信